
知识图谱
文章平均质量分 94
AIGC Studio
计算机专业研究生,人工智能领域优质创者者,研究计算机视觉、深度学习、图像生成、GAN、VAE、Stable Diffusion、Sora、AIGC视觉大模型等,有三维重建、VTK开发、点云处理和医学图像处理等开发经验。曾在滴滴,小米任职算法工程师。
展开
-
知识图谱之实体对齐二
4.2知识融合经由信息抽取之后的信息单元间的关系是扁平化的,缺乏层次性和逻辑性,同时存在大量冗余甚至错误的信息碎片。知识融合旨在解决如何将关于同一个实体或概念的多源描述信息融合起来,将多个知识库中的知识进行整合,形成一个知识库的过程,在这个过程中,主要关键技术包含指代消解、实体消歧、实体链接。4.2.1关键问题解决方法(1)实体统一(共指消解)多源异构数据在集成的过程中,通常会出现一个现实世界实体对应多个表象的现象,导致这种现象发生的原因可能是:拼写错误、命名规则不同、名称变体、缩写等等。而原创 2020-11-24 21:32:31 · 6088 阅读 · 0 评论 -
知识图谱之实体对齐一
知识融合一般分为两步,本体对齐和实体匹配两种的基本流程相似,如下:一、实体对齐常见的步骤:数据预处理:1) 语法正规化 2) 数据正规化 记录链接:把实体通过相似度进行连接 相似度计算:分成属性相似度和实体相似度。其中,属性相似度可以通过编辑距离(Levenstein,Wagner and Fisher, edit distance with Afine Gaps)集合相似度(Jaccard, Dice)基于向量的相似度(Cosine,TFIDF)。实体相似度可通过聚合,聚类(Canoy+K原创 2020-10-24 12:44:34 · 15325 阅读 · 0 评论 -
知识图谱构建(概念,工具,实例调研)
知识图谱(Knowledge graph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自Semantic Web(语义网络),其最初理想是把基于文本链接的万维网落转化为基于实体链接的语义网络。原创 2020-10-24 12:56:41 · 75718 阅读 · 7 评论