
自然语言处理
文章平均质量分 92
AIGC Studio
计算机专业研究生,人工智能领域优质创者者,研究计算机视觉、深度学习、图像生成、GAN、VAE、Stable Diffusion、Sora、AIGC视觉大模型等,有三维重建、VTK开发、点云处理和医学图像处理等开发经验。曾在滴滴,小米任职算法工程师。
展开
-
Anthropic发布Claude 3, 在多任务上达到了新的SOTA,支持100万Token上下文,效果超过GPT-4!
AnthropicAI发布了Claude 3,包含三个模型:Claude 3 Opus、Claude 3 Sonnet 和 Claude 3 Haiku,它们在推理、数学、编程、多语言理解和视觉方面达到了新的SOTA,效果超过GPT-4。Opus 和 Sonnet 现在已经可以在 claude.ai 和 Claude API 中使用,后者现在已经在 159 个国家普遍可用。Haiku也将很快推出。原创 2024-03-05 10:40:04 · 1690 阅读 · 0 评论 -
知识图谱构建流程步骤详解
知识图谱构建流程概览1.知识抽取1.1 知识抽取的主要任务(1)实体识别与抽取任务:识别出待处理文本中七类(人名、机构名、地名、时间、日期、货币和百分比)命名实体。两个子任务:实体边界识别和确定实体类型。(2)关系抽取任务:关系抽取是从文本中抽取出两个或多个实体之间的语义关系。它是信息抽取研究领域的任务之一。(3)属性抽取任务:对一个给定的实体从非结构化文本中抽取出实体的属性及其属性值形成结构化数据。1.2 实体抽取知识抽取包括三个要素:实体抽取(命名实体识别原创 2022-05-31 11:25:14 · 55195 阅读 · 3 评论 -
知识图谱之实体对齐二
知识图谱之实体对齐方法调研原创 2022-05-31 11:10:34 · 1816 阅读 · 0 评论 -
知识图谱构建(概念,工具,实例调研)
知识图谱(Knowledge graph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自Semantic Web(语义网络),其最初理想是把基于文本链接的万维网落转化为基于实体链接的语义网络。原创 2020-10-24 12:56:41 · 75718 阅读 · 7 评论 -
知识图谱之实体对齐一
知识融合一般分为两步,本体对齐和实体匹配两种的基本流程相似,如下:一、实体对齐常见的步骤:数据预处理:1) 语法正规化 2) 数据正规化 记录链接:把实体通过相似度进行连接 相似度计算:分成属性相似度和实体相似度。其中,属性相似度可以通过编辑距离(Levenstein,Wagner and Fisher, edit distance with Afine Gaps)集合相似度(Jaccard, Dice)基于向量的相似度(Cosine,TFIDF)。实体相似度可通过聚合,聚类(Canoy+K原创 2020-10-24 12:44:34 · 15325 阅读 · 0 评论 -
NLP之jieba库使用
Python jieba库的使用说明阅读目录1、jieba库基本介绍 2.jieba应用实例 3.利用jieba库统计三国演义中任务的出场次数回到顶部1、jieba库基本介绍(1)、jieba库概述 jieba是优秀的中文分词第三方库 -中文文本需要通过分词获得单个的词语 -jieba是优秀的中文...转载 2019-10-22 20:41:46 · 950 阅读 · 0 评论 -
自然语言处理基础工具调研及测试
课程要求的一部分,目前找了一些并跑通代码进行相关测试,不完整待续。自然语言基础工具调研词典(https://github.com/fighting41love/funNLP)分词工具 NLPIR(https://blog.csdn.net/MebiuW/article/details/52232562) NLPIR汉语分词系统(又名ICTCLAS2013),主要功能包括中文分词...原创 2019-11-05 20:18:08 · 619 阅读 · 10 评论