
视频&图像增强
文章平均质量分 92
AIGC Studio
计算机专业研究生,人工智能领域优质创者者,研究计算机视觉、深度学习、图像生成、GAN、VAE、Stable Diffusion、Sora、AIGC视觉大模型等,有三维重建、VTK开发、点云处理和医学图像处理等开发经验。曾在滴滴,小米任职算法工程师。
展开
-
ECCV 2024前沿科技速递:GLARE-基于生成潜在特征的码本检索点亮低光世界,低光环境也能拍出明亮大片!
大多数现有的低光图像增强 (LLIE) 方法要么直接将低光 (LL) 映射到正常光 (NL) 图像,要么使用语义或照明图作为指导。然而,LLIE 的病态性质和从受损输入中进行语义检索的难度限制了这些方法,尤其是在极低光照条件下。为了解决这个问题,我们通过基于生成性潜在特征的码本检索 (GLARE) 提出了一种新的 LLIE 网络,其中使用矢量量化 (VQ) 策略从未退化的 NL 图像中得出码本先验。原创 2024-07-31 23:12:00 · 1241 阅读 · 0 评论 -
论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》
在弱光条件下拍摄的图像通常能见度较差。除了不理想的照明,多种类型的退化,如噪音和颜色失真,由于相机的质量有限,这些退化隐藏在黑暗中。仅提高黑暗区域的亮度将不可避免地放大隐藏的退化。这项工作建立了一个简单而有效的点燃黑暗的网络(表示为kinD),它的灵感来自视retinex理论,将图像分解成两个部分。一个组件(照明)负责光的调节,而另一个组件(反射率)负责退化去除。网络是在不同曝光条件下拍摄的成对图像进行训练的。可以抵抗严重的视觉缺陷,并且用户可以任意调节光线的亮度。原创 2023-10-18 21:35:10 · 1295 阅读 · 1 评论 -
论文阅读之《Learn to see in the dark》
Learn to see in the dark创建了一个黑暗的图像数据集 (SID) 以支持数据驱动方法的研究。利用 SID 数据集,提出一种基于 FCN 模型(以U-net为核心),通过端到端训练,改善了传统的处理低光图像的方法。可以抑制噪声并正确地实现颜色转换。原创 2023-10-14 12:01:39 · 988 阅读 · 1 评论 -
视频基础知识
本文介绍了关于视频的相关基础知识包括视频比特率,分辨率,帧率,音视频同步,视频格式和编码格式以及视频质量评价指标相关内容。原创 2023-07-22 19:04:45 · 1625 阅读 · 0 评论 -
视频增强技术-去噪
本文介绍了关于视频增强技术的相关方法包括传统方法和基于深度学习的方法,并给出了它们的对比实验结果,最后对它们做了总结。原创 2023-07-22 18:56:51 · 4025 阅读 · 0 评论