
智能优化方法
AIGC Studio
计算机专业研究生,人工智能领域优质创者者,研究计算机视觉、深度学习、图像生成、GAN、VAE、Stable Diffusion、Sora、AIGC视觉大模型等,有三维重建、VTK开发、点云处理和医学图像处理等开发经验。曾在滴滴,小米任职算法工程师。
展开
-
基于遗传算法和模拟退火算法改进的混合模拟退火算法(解决求函数极值问题,MATLAB代码已实现)
基本思想:混合模拟退火算法时遗传算法和模拟退火算法的结合,在混合模拟退火算法中使用了大量的样本作为问题的可能解决方案而不是将单个样本作为一个问题的可能解决方案。对遗传算法中适应的概念进行相应改进。混合模拟退火的算法步骤如下:(1)将系统温度T设置为足够高的值。(2)随机的初始化人口。(3)人口随机初始化从现有种群中重复生成每个新种群,直到系统温度T达到一个令人满意的最小值。...原创 2019-12-02 21:38:50 · 18341 阅读 · 17 评论 -
遗传算法求函数极值(含MATLAB代码实现)
介绍转载自https://blog.csdn.net/xujinpeng99/article/details/6211597,后面用自己设置的函数进行实验。引言:遗传算法求函数极值算是遗传算法的一种最简单的应用,这里就介绍一种简单的,全文基本翻译自codeproject的一篇文章,作者为Luay Al-wesi,软件工程师。例子中的函数为y = -x2+ 5 ,大家可以将其改为其他复杂一些的函...原创 2019-12-02 17:40:55 · 14385 阅读 · 5 评论 -
模拟退火算法求函数极值(含MATLAB代码实现)
二、模拟退火算法1. 简介模拟退火算法的思想借鉴于固体的退火过程,当固体的温度很高时,内能比较大,固体内的粒子处于快速无序运动状态,当温度慢慢降低,固体的内能减小,粒子逐渐趋于有序,最终固体处于常温状态,内能达到最小,此时粒子最为稳定。白话理解:一开始为算法设定一个较高的值T(模拟温度),算法不稳定,选择当前较差解的概率很大;随着T的减小,算法趋于稳定,选择较差解的概率...原创 2019-12-02 17:35:37 · 8872 阅读 · 0 评论