电池SOC估计方法

    全球经济快速增长使得能源需求与日俱增,由于传统化石能源的不可再生性以及其带来的环境污染问题日益突出,世界各国正将目光转向新能源的开发与利用上,以谋求能源的可持续发展。

    燃油车的尾气排放是全球碳排放的主要来源之一,减少燃油汽车尾气的排放对降低全球碳排放具有重大意义,电动汽车行业市场规模也因此日益扩大,锂离子电池进一步得到了广泛应用。因此锂电池管理系统已成为研究热点。电池SOC估计是电池管理系统的核心功能之一。精准的SOC估计能正确显示电动汽车当前的剩余电量和预计续航里程,避免因电量不足而导致车辆故障;精准的SOC估计还可以防止电池过度充电或过度放电,这不仅避免了潜在的系统中断风险和电池内部损伤,还减少了寿命缩短或爆炸等风险。

    目前常用的电池SOC估计方法有开路电压法、安时积分法、卡尔曼滤波法、神经网络法、混合方法等。

一、开路电压法(Open Circuit Voltage Method, OCV)

1.1原理

    开路电压法是基于电池的开路电压(OCV)与SOC之间存在的固有关系来进行估计的。当电池处于开路状态,即没有负载电流流过时,电池的端电压被称为开路电压。OCV与SOC之间通常有一个特定的非线性关系,这种关系可以通过实验数据进行标定,并绘制出OCV-SOC曲线。

1.2实施步骤

(1)实验标定曲线:首先,需要通过实验测量不同SOC下的开路电压值。这通常包括在各种SOC下让电池静置足够长的时间(锂离子电池一般静置1-3小时)以达到平衡状态,测量其开路电压,得到OCV-SOC曲线。

(2)实时测量开路电压:在实际使用过程中,通过监控电池的开路电压(即在电池静置或无负载的情况下测量电压值),可以获取当前的OCV值。

(3)查表估计SOC:利用预先标定的OCV-SOC曲线,将测得的OCV值对应到具体的SOC值上,从而实现SOC估计。

1.3优缺点

优点

(1)简单易行:开路电压法所需的硬件和计算资源较少,只需测量电压即可估算SOC。

(2)精度较高:在无负载和稳定状态下,OCV-SOC关系比较稳定,因此能够提供较高的估算精度。

缺点

(1)实时性差:由于需要在无负载条件下测量电压,该方法不能用于实时SOC估计。在实际应用中,很少有电池能够在使用过程中完全处于开路状态。

(2)依赖静置时间:为了保证测量的开路电压准确反映SOC,通常需要让电池静置一段时间以达到电压平衡,这在动态应用中难以实现。

(3)受外部因素影响:电池的OCV-SOC关系会受到温度、电池老化、充放电历史等因素的影响。因此,基于OCV的SOC估计需要考虑这些因素的校正。

1.4应用场景

开路电压法在实际应用中主要适用于以下几种情况:

(1)静态应用:如储能系统中的备用电池,在不频繁充放电的情况下可以通过开路电压法进行SOC估计。

(2)维护和校准:在电池维护和校准过程中,可以利用静置后的开路电压进行SOC校正,确保其他SOC估计方法的准确性。

(3)混合方法中的一部分:开路电压法可以与其他SOC估计方法结合使用,如在车辆行驶过程中使用安时计量法实时估计SOC,而在车辆停驶后利用开路电压进行校正。

二、安时积分法(Coulomb Counting Method)

    安时积分法(Coulomb Counting Method)是电池SOC估计中最常用的方法之一。该方法通过积分电池的充放电电流来估计电池的SOC。具体来说,它的工作原理和步骤如下:

2.1原理

    安时积分法基于库仑定律,即电荷量等于电流与时间的乘积。通过连续测量电池的充放电电流并对其进行积分,可以获得电池在一段时间内的电量变化,从而估算出电池的SOC。计算公式如式(2-1)所示。

SOC(t)=SOC(t_{0})+\frac{1}{C_{n}}\int_{t_{0}}^{t}I(t)dt                                   式(2-1)

SOC(t):t时刻电池的SOC值;

SOC(t0​):t时刻电池的SOC值;

Cn​:电池的标称容量,单位为安时(Ah)。

I(t):t时刻的电池电流,单位为安培(A)。

2.2估计步骤

(1)初始SOC确定:在开始测量之前,需要知道电池的初始SOC,即SOC(t0)。初始SOC的准确性对后续估计有很大影响。通常可以通过开路电压法或其他校准方法来获得初始SOC。

(2)电流测量:连续测量电池的充放电电流。电流传感器的精度和响应速度对SOC估计的精确性至关重要。

(3)SOC更新:按照公式进行计算,先对电流进行积分,计算在测量时间段内电池电荷的累积变化;然后用初始SOC值加上电流积分值;得出SOC更新值。

2.3优缺点

优点

(1)实时性好:安时积分法能够实时跟踪电池的充放电状态,适用于需要动态监控SOC的应用场景,如电动汽车和便携设备。

(2)实现简单:该方法实现起来比较简单,只需要电流传感器和积分运算,计算量较低。

(3)适用性广:安时积分法适用于各种类型的电池,包括锂离子电池、铅酸电池等。

缺点

(1)初始SOC准确性要求高:安时积分法对初始SOC的准确性依赖较大,如果初始SOC不准确,会导致后续计算误差累积。

(2)误差累积问题:由于电流测量误差和积分误差的存在,随着时间推移,SOC估计误差会逐渐累积。因此,长时间运行时需要定期校准。

(3)环境影响:电池的实际容量会受到温度、放电率和电池老化等因素的影响,导致SOC估计误差。

2.4应用场景

(1)电动汽车:电动汽车对电池SOC的准确估计要求较高,安时积分法可以提供实时的SOC信息,帮助管理电池的充放电过程,优化能量使用。

(2)便携设备:手机、笔记本电脑等便携设备需要实时监控电池状态,安时积分法能够满足这一需求,提供可靠的SOC估计。

(3)储能系统:在电网储能系统中,实时了解电池组的SOC对于电力调度和管理非常重要,安时积分法可以提供连续的SOC监测。

2.5误差校正

   为了减小安时积分法的误差累积问题,通常会结合其他方法进行误差校正。例如:

(1)结合开路电压法:定期利用电池静置时的开路电压来校正SOC,减少累计误差。

(2)结合卡尔曼滤波:使用卡尔曼滤波法来滤除噪声和修正估计误差,进一步提高SOC估计的精度。

三、卡尔曼滤波法 (Kalman Filter Method)

    卡尔曼滤波理论(Kalman Filter, KF)是在1960年由鲁道夫·卡尔曼提出,该滤波是基于最小均方差准则,是一种利用上一时刻的估计值和当前时刻的观测值来得出当前时刻的最优状态值估计值的线性离线系统滤波器。具体的卡尔曼滤波算法在我以前的文章中有详细介绍。

3.1优缺点

优点

(1)高精度估计

结合模型和测量数据:卡尔曼滤波利用电池模型和实时测量的数据进行综合估计,能有效减少单一数据源带来的误差,提供高精度的SOC估计。

误差修正:通过不断修正预测误差,卡尔曼滤波可以逐步优化SOC的估计值,减少累积误差的影响。

(2)实时性强

递归计算:卡尔曼滤波采用递归算法,在每个时间步长进行状态更新,能够实时跟踪电池SOC的变化,适用于实时监控和控制。

(3)抗噪性能好

鲁棒性:卡尔曼滤波在处理噪声和不确定性方面表现优异,通过考虑过程噪声和测量噪声,可以在噪声环境下保持良好的估计性能。

(4)多状态估计

综合估计:卡尔曼滤波不仅可以估计SOC,还可以同时估计电池的其他状态参数(如内阻),提供更全面的电池状态信息。

缺点

(1)计算复杂度高

计算资源需求:卡尔曼滤波尤其是扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF),涉及大量矩阵运算和非线性变换,计算复杂度较高,对硬件资源要求较大。

(2)依赖模型准确性

模型依赖:卡尔曼滤波的效果高度依赖于电池模型的准确性和参数的精确度。如果电池模型不准确或参数估计有偏差,SOC估计的精度将受到严重影响。

(3)实现复杂

算法复杂性:相比于其他简单的SOC估计方法(如安时积分法),卡尔曼滤波的实现较为复杂,需要专业知识和经验来调试和优化滤波器参数。

(4)初始状态敏感

初始条件:卡尔曼滤波对初始状态的选择较为敏感,初始估计误差可能导致滤波器收敛缓慢或不稳定,需要合理设置初始条件。

3.2应用场景

    卡尔曼滤波法由于其高精度和实时性的特点,在各种需要精准电池管理的场景中得到了广泛应用。无论是在电动汽车、便携式设备还是再生能源储能系统中,卡尔曼滤波法都能够提供可靠的SOC估计,优化系统性能和能量管理策略。

四、神经网络和机器学习方法 (Neural Network and Machine Learning Methods)

    神经网络法利用人工神经网络(ANN)和深度学习技术来估计电池的状态(SOC)。这种方法特别适用于处理复杂的非线性关系和大数据,通过学习历史数据中的模式和特征,来进行SOC的预测和估计。

1.神经网络估计流程

(1)数据收集和预处理

数据收集:收集大量电池在不同工况下的运行数据,包括电压、电流、温度、充放电周期等参数。这些数据应涵盖电池的各种工作状态,以确保训练数据的多样性和全面性。

数据预处理:对收集到的数据进行预处理,包括数据清洗、归一化和特征提取。归一化处理是为了使输入数据在同一尺度范围内,避免因数值差异过大影响模型训练效果。

(2) 选择合适的神经网络模型

根据电池SOC估计的具体需求,可以选择不同类型的神经网络模型:

人工神经网络(ANN):适用于处理简单的非线性关系。

卷积神经网络(CNN):适用于处理具有空间结构的输入数据,如二维特征图。

循环神经网络(RNN)和长短期记忆网络(LSTM):适用于处理时间序列数据,捕捉数据随时间变化的动态特征。

(3)模型构建和训练

模型构建:根据选择的神经网络类型,构建相应的模型结构。例如,ANN可以由输入层、隐藏层和输出层组成;CNN则包括卷积层、池化层和全连接层;RNN/LSTM则由多个循环单元构成。

模型训练:使用预处理后的数据对模型进行训练。训练过程中,通过反向传播算法不断调整神经网络的权重和偏置,使模型输出与真实SOC值之间的误差最小化。常用的优化算法包括随机梯度下降(SGD)、Adam等。

损失函数:选择合适的损失函数来衡量模型的预测误差。对于回归问题,常用的损失函数包括均方误差(MSE)和均方根误差(RMSE)。

(4)模型验证和评估

交叉验证:采用交叉验证方法评估模型的性能。将数据集分成训练集和验证集,通过多次训练和验证,评估模型的泛化能力。

评价指标:常用的评价指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)等。这些指标可以帮助判断模型在SOC估计中的准确性和稳定性。

4.2优缺点

优点

(1)处理复杂非线性关系:

神经网络能够捕捉电池SOC与电压、电流、温度等变量之间复杂的非线性关系。相比于传统线性模型,神经网络在处理复杂数据模式方面具有明显优势。

(2)自适应能力强:

神经网络可以通过不断学习和更新数据,提高SOC估计的精度和鲁棒性。随着更多的运行数据输入,模型可以逐步优化,适应电池性能的变化。

(3)无需精确的电池模型:

传统方法(如卡尔曼滤波)通常需要精确的电池物理模型,而神经网络则依赖于数据驱动,不需要预先建立复杂的电池模型。这样减少了对电池参数和特性的依赖。

(4)多维度数据融合:

神经网络可以同时处理多种输入参数(如电压、电流、温度等),有效融合多维度信息,提高SOC估计的准确性。

(5)实时性强:

经过训练的神经网络模型能够快速输出SOC估计值,适用于实时应用场景。

缺点

(1)训练数据需求大:

神经网络需要大量高质量的训练数据,覆盖各种工况和状态,以保证模型的准确性和泛化能力。在实际应用中,收集和处理足够的数据可能具有挑战性。

(2)计算复杂度高:

神经网络的训练过程计算量大,尤其是深度神经网络,需要强大的计算资源和时间。在资源受限的设备上,实时应用可能受到限制。

(3)模型的黑箱特性:

神经网络模型的内部结构复杂,缺乏透明性和解释性。很难直接理解模型的决策过程,进而对模型进行诊断和调整。

(4)过拟合风险:

神经网络模型容易过拟合训练数据,特别是在训练数据不足或数据质量较差的情况下。过拟合会导致模型在新数据上的表现不佳,需要采取正则化、交叉验证等手段来缓解。

(5)对异常数据敏感:

神经网络对输入数据的异常值和噪声较为敏感,这可能影响SOC估计的准确性。在实际应用中,需要进行数据清洗和异常值处理。

五、总结

本文围绕目前锂电池SOC估计方法开展综述,对比分析了多种不同锂电池SOC估计方法的实现流程、优势与局限性。各种方法的优点和缺点如表1所示。

表一、各种方法的优缺点

方法优点缺点
开路电压法- 简单易行
- 精度较高(在无负载和稳定状态下)
- 需要静置状态,无法实时估计
- 受温度和电池老化影响较大
安时积分法- 实时性好
- 适用于大多数电池类型
- 初始SOC值准确性要求高
- 误差累积,需要定期校准
卡尔曼滤波法- 可以同时估计SOC和其他状态参数
- 抗噪性能好,精度高
- 计算复杂度较高
- 需要精确的电池模型和参数
神经网络和机器学习方法- 适应性强,处理复杂非线性关系
- 不需要精确的电池模型
- 训练数据需求大
- 模型的泛化能力和解释性较差

  • 18
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值