Cr: https://www.cnblogs.com/hadoop2015/p/7419087.html
Cr:https://www.cnblogs.com/zy230530/p/7074215.html
PCA
一、使用PCA降维的好处:寻找在均方意义下,最能代表原始数据的投影方法
- 特征多余:比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征。
- 特征间相关性很强,可以适当合并。
- 特征数特别多而样例特别少,已造成过拟合。
- 去除噪声。
二、原理描述:
PCA(principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据压缩算法。
在PCA中,数据从原来的坐标系转换到新的坐标系。转换坐标系时,以方差最大的方向作为坐标轴方向(数据的最大方差给出了数据最重要的信息)。第一个新坐标轴的选择是原始数据中方差最大的方法,第二个新坐标轴选择的是与第一个坐标轴正交且方差第二大的方向。重复该过程,且重复次数为原始数据的特征维数。
在新坐标系中,大部分方差都包含在前面几个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们忽略余下的坐标轴,只保留前面几个含有大部分方差的坐标轴,实现了数据特征的降维处理。数学上,通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值和特征向量,选择特征值最大(即包含方差最大的)N个特征对应的特征向量组成的矩阵,我们就可以把数据矩阵转换到新的空间当中,实现数据特征的降维。
均值、方差、协方差计算公式:方差和协方差除n-1是为了得到各自的无偏估计
首先根据矩阵的协方差的特征值和特征向量,得到最大的N个特征值对应的特征向量组成的矩阵,可以称之为压缩矩阵;得到压缩矩阵之后,将去除均值的数据矩阵乘以压缩矩阵(去中心化),就实现了将原始特征转化为新的特征空间特征。
去中心化:PCA实则就是对协方差矩阵进行对角化,从协方差矩阵的定义看: Σ=E{(x-E(x)) * (x-E(x))T},PCA的第一步就是要去均值化。
三、缺点:
1、主成分解释其含义往往具有一定的模糊性,不如原始样本完整
2、贡献率小的主成分往往可能含有对样本差异的重要信息
3、特征值矩阵的正交向量空间是否唯一有待讨论
4、无监督学习
5、SVD通常比直接使用PCA更稳定
SVD
Cr:https://blog.csdn.net/zk_j1994/article/details/76796616
懒得写了,下次再总结