电容滤波对单相不控整流的影响

本文详细探讨了单相桥式不控整流电路在不同电容值下的工作特性。当电容为0时,输出电压为100Hz正弦半波;电容不为0时,随着电容值增大,输出电压波形从指数下降到几乎不变。分析了VS上升和下降期间的电流分布,以及电容充电与放电对电路的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

单相不控整流电路

下图是一个简单的单相桥式不控整流电路,VS为50Hz,Vpeak=100V的正弦电压源。
在这里插入图片描述

1)若电容C=0
此时我们可以很简单的得到输出电压波形为频率为100Hz的正弦半波
在这里插入图片描述
2)电容大于0,但是不是特别大
此时我们先进行定性分析
VS从0上升至100:整流桥导通,输出电压Vo=VS也逐渐上升。
VS从100下降:此时电容放电速度大于VS充电速度,整流桥仍然导通,所以输出电压Vo=VS,电阻电流iR=Vo/R逐渐下降,电容电流iC=CdVo/dt<0,反向电流逐渐增加,由于iD=iC+iR,当iC=-iR时,iD=0,此时整流桥断流。
断流后:电容放电给电阻,输出电压随指数下降。具体输出电压波形如下图所示
在这里插入图片描述
3)电容特别大
电容充满电后,放电引起的压降太小,输出电压基本不变化。
在这里插入图片描述

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 片数量: - 训练集:16,353- 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值