Mindspore安装

本文用于记录搭建昇思MindSpore开发及使用环境的过程,并通过MindSpore的API快速实现了一个简单的深度学习模型。

什么是MindSpore?

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景覆盖三大目标。

安装步骤

鉴于笔者手头硬件资源有限,这里采用的环境是CPU。如下是在CPU环境的Windows系统上,使用pip方式快速安装MindSpore的步骤:

  1. 确认系统环境信息
  • 确认安装Windows 10是x86架构64位操作系统。
  • 确认安装Python(>=3.7.5),已有Python环境是Python3.9.7版本,满足要求。
  1. 安装MindSpore

运行以下命令:

# Python3.9
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.0.0a0/MindSpore/cpu/x86_64/mindspore-2.0.0a0-cp39-cp39-win_amd64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

在联网状态下,安装whl包时会自动下载mindspore安装包的依赖项。

安装报错

ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。: 'D:\\Program Files\\Anaconda\\Lib\\site-packages\\~-mpy\\.libs\\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll' Consider using the `--user` option or check the permissions.

在这里插入图片描述

这是因为pip安装模块的权限不够导致失败,笔者是通过执行下面的命令得以解决。

pip install -i http://pypi.douban.com/simple/  pip -U --trusted-host pypi.douban.com --user

执行完上述命令之后再次安装mindspore,如下图。

在这里插入图片描述

  1. 验证安装是否成功
python -c "import mindspore;mindspore.run_check()"

输出如下内容,表明安装成功。

在这里插入图片描述

快速入门

这里以手写体数字识别为例,体验了基于MindSpore的API实现深度学习模型的过程。

场景描述

本文使用Mindspore,基于Resnet50神经网络完成手写体数字识别。

数据集处理

下载Mnist数据集

Mnist数据集是机器学习领域的一款经典数据集,其中包括6w个训练样本和1w个测试样本,每个样本都是28*28像素的灰度手写数字图片,数字0-9共10类。通过如下代码下载:

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

在这里插入图片描述

获取数据集对象

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')
print(train_dataset.get_col_names()) #['image', 'label']

数据集目录如下,其中标记为images的是图片,labels是标签。

在这里插入图片描述

数据处理

数据集自动下载完成后,可使用数据处理模块 mindspore.dataset 进行预处理。这里采用的是流水线处理,在海量数据下,该处理模式可以实现数据的高效处理,当然也会占用更多的CPU和内存资源。

  1. 使用map对图像数据及标签进行变换处理,并将处理完的数据集打包,batchsize为64。map函数会将数据集中第二个参数的指定的列作为输入,调用第一个参数的处理函数执行处理,如果有多个处理函数,上一个函数的输出作为下一个函数的输入。其中,map的第一个参数是处理函数列表,第二个参数表示需要处理的列。
def data_process(dataset, batch_size):
    image_transforms = [
        #图像缩放,输出像素值output = image * rescale + shift.
        vision.Rescale(1.0 / 255.0, 0),
        #根据平均值和标准偏差对输入图像进行归一化,其中,mean是图像各个通道的均值,std是各个通道的标准差
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        #转换图像格式,在不同的硬件设备中可能会对(height, width, channel)
        # 或(channel, height, width)两种不同格式有针对性优化。MindSpore设
        # 置HWC为默认图像格式,在有CWH格式需求时,可使用该变换进行处理。
        vision.HWC2CHW()
    ]
    # 转为mindspore的int32格式
    label_transform = transforms.TypeCast(mindspore.int32)
    
    # 对各个图像按照流水线处理
    dataset = dataset.map(image_transforms, 'image')
    # 将各个标签转为int32类型
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

train_dataset = data_process(train_dataset, 64)
test_dataset = data_process(test_dataset, 64)
  1. 使用create_tuple_iterator或create_dict_iterator对数据集进行迭代。
# image, label = next(train_dataset.create_tuple_iterator())

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break

for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break

网络构建

基于mindspore的nn.Cell类,构建Resnet50神经网络。

神经网络模型由神经网络层和Tensor操作构成,基于 mindspore.nn 可实现常见的神经网络层,其中 nn.Cell 类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型可表示为一个Cell,它又是由
不同的子Cell组成。基于这样的嵌套结构,即可简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

定义模型类

定义神经网络模型继承nn.Cell类,再在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

构建完成后,实例化Network对象,并查看结构。

model = Network()
print(model)

在这里插入图片描述

模型层分解

构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像)。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape) #(3, 28, 28)
  • nn.Flatten

    实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。

    flatten = nn.Flatten()
    flat_image = flatten(input_image)
    print(flat_image.shape) # (3, 784)
    
  • nn.Dense

    nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

    layer1 = nn.Dense(in_channels=28*28, out_channels=20)
    hidden1 = layer1(flat_image)
    print(hidden1.shape) #(3, 20)
    
  • nn.ReLU

    nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

    print(f"Before ReLU: {hidden1}\n\n")
    hidden1 = nn.ReLU()(hidden1)
    print(f"After ReLU: {hidden1}")
    

在这里插入图片描述

  • nn.SequentialCell

    nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

    seq_modules = nn.SequentialCell(
        flatten,
        layer1,
        nn.ReLU(),
        nn.Dense(20, 10)
    )
    
    logits = seq_modules(input_image)
    print(logits.shape) #(3,10)
    
  • nn.Softmax

    最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

    softmax = nn.Softmax(axis=1)
    pred_probab = softmax(logits)
    

    输出如下:

    [[0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]
    [0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]
    [0.09906127 0.09989168 0.101061   0.10052359 0.09982764 0.1007046
    0.10100672 0.09960879 0.09997301 0.09834171]]
    

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

在这里插入图片描述

模型训练

#定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

通常,一个完成的模型训练过程包括如下三步:

  1. 正向计算:模型对结果预测,输出logits值,并与正确标签label求预测损失loss
  2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  3. 参数优化:将梯度更新到参数上。
# 定义正向计算函数
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

#通过mindspore中的函数变换获取梯度计算函数
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 定义训练函数
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

定义测试函数,评估模型性能。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看出,
loss不断下降,准确度不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")

在这里插入图片描述

保存模型

模型训练完成后,将参数进行保存。

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

加载模型

加载模型包括两步,具体如下。

# 实例化模型对象,构造模型。
model = Network()
# 加载模型参数,并将其加载至模型上。
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load = mindspore.load_param_into_net(model, param_dict)
#param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。
print(param_not_load)#[]

模型推理

加载后的模型即可直接用于预测推理。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break

在这里插入图片描述

  • 2
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
MindSpore是一种适用于端边云场景的新型开源深度学习训练/推理框架。 MindSpore提供了友好的设计和高效的执行,旨在提升数据科学家和算法工程师的开发体验,并为Ascend AI处理器提供原生支持,以及软硬件协同优化。 同时,MindSpore作为全球AI开源社区,致力于进一步开发和丰富AI软硬件应用生态。 MindSpore特点: 自动微分 当前主流深度学习框架中有三种自动微分技术: 基于静态计算图的转换:编译时将网络转换为静态数据流图,将链式法则应用于数据流图,实现自动微分。 基于动态计算图的转换:记录算子过载正向执行时网络的运行轨迹,对动态生成的数据流图应用链式法则,实现自动微分。 基于源码的转换:该技术是从功能编程框架演进而来,以即时编译(Just-in-time Compilation,JIT)的形式对中间表达式(程序在编译过程中的表达式)进行自动差分转换,支持复杂的控制流场景、高阶函数和闭包。 TensorFlow早期采用的是静态计算图,PyTorch采用的是动态计算图。静态映射可以利用静态编译技术来优化网络性能,但是构建网络或调试网络非常复杂。动态图的使用非常方便,但很难实现性能的极限优化。 MindSpore找到了另一种方法,即基于源代码转换的自动微分。一方面,它支持自动控制流的自动微分,因此像PyTorch这样的模型构建非常方便。另一方面,MindSpore可以对神经网络进行静态编译优化,以获得更好的性能。 MindSpore自动微分的实现可以理解为程序本身的符号微分。MindSpore IR是一个函数中间表达式,它与基础代数中的复合函数具有直观的对应关系。复合函数的公式由任意可推导的基础函数组成。MindSpore IR中的每个原语操作都可以对应基础代数中的基本功能,从而可以建立更复杂的流控制。 自动并行 MindSpore自动并行的目的是构建数据并行、模型并行和混合并行相结合的训练方法。该方法能够自动选择开销最小的模型切分策略,实现自动分布并行训练。 目前MindSpore采用的是算子切分的细粒度并行策略,即图中的每个算子被切分为一个集群,完成并行操作。在此期间的切分策略可能非常复杂,但是作为一名Python开发者,您无需关注底层实现,只要顶层API计算是有效的即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穿着帆布鞋也能走猫步

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值