马尔可夫链蒙特卡洛(Markov Chain Monte Carlo)

MCMC方法的许多应用是关于贝叶斯统计分析问题的,这些贝叶斯统计分析中常常需要计算后验分布的一些数字特征,如后验期望、后验方差、后验众数、后验分位数等。

蒙特卡洛抽样方法 \textbf{蒙特卡洛抽样方法} 蒙特卡洛抽样方法

p ( x ∣ θ ) p(\boldsymbol{x}|\theta) p(xθ)表示样本的概率函数(或称为参数 θ \theta θ 的似然函数), π ( θ ) \pi(\theta) π(θ) θ \theta θ 的先验分布,则 θ \theta θ 的后验分布为
π ( θ ∣ x ) = p ( x ∣ θ ) π ( θ ) ∫ p ( x ∣ θ ) π ( θ ) d θ ( 1 ) \pi(\theta|\boldsymbol{x}) =\frac{p(\boldsymbol{x}|\theta)\pi(\theta)}{\int p(\boldsymbol{x}|\theta)\pi(\theta) d\theta } \qquad(1) π(θx)=p(xθ)π(θ)dθp(xθ)π(θ)(1)我们的目标是函数 h ( θ ) h(\theta) h(θ)的后验期望
E [ h ( θ ) ∣ x ] = ∫ h ( θ ) π ( θ ∣ x ) = ∫ h ( θ ) p ( x ∣ θ ) π ( θ ) d θ ∫ p ( x ∣ θ ) π ( θ ) d θ ( 2 ) E[h(\theta)|\boldsymbol{x}]=\int h(\theta)\pi(\theta|\boldsymbol{x})=\frac{\int h(\theta)p(\boldsymbol{x}|\theta)\pi(\theta)d\theta}{\int p(\boldsymbol{x}|\theta)\pi(\theta) d\theta} \qquad(2) E[h(θ)x]=h(θ)π(θx)=p(xθ)π(θ)dθh(θ)p(xθ)π(θ)dθ(2)
h ( θ ) = θ h(\theta)=\theta h(θ)=θ时,上式表示 θ \theta θ的后验期望;
h ( θ ) = [ θ − E ( θ ∣ x ) ] 2 h(\theta)=[\theta-E(\theta|\boldsymbol{x})]^2 h(θ)=[θE(θx)]2,上式表示 θ \theta θ的后验方差。

对于一些复杂问题式(2)没有显式表达,除了使用分析逼近方法或者数值积分方法之外,蒙特卡洛抽样方法是一个可选用的有效计算方法。

因此对于式(2)应用蒙特卡洛抽样方法,从后验分布 π ( θ ∣ x ) \pi(\theta|\boldsymbol{x}) π(θx)中产生i.i.d.观测值 θ 1 , θ 2 , … , θ m \theta_1,\theta_2,\dots,\theta_m θ1,θ2,,θm,则由大数定律:
h ˉ m = 1 m ∑ i = 1 m h ( θ i ) ( 3 ) \bar{h}_m=\frac{1}{m}\sum_{i=1}^m h(\theta_i) \qquad(3) hˉm=m1i=1mh(θi)(3)
这种用式(3)去逼近式(2)的方法被称为蒙特卡洛抽样方法
很多时候从后验分布 π ( θ ∣ x ) \pi(\theta|\boldsymbol{x}) π(θx)中产生i.i.d.观测值很困难, 而从与后验分布非常接近的分布 g g g中抽样比较容易,从而在蒙特卡洛方法中引入重要性函数的概念。

对于式(2)最右边项的分子:
∫ h ( θ ) p ( x ∣ θ ) π ( θ ) d θ = ∫ { h ( θ ) p ( x ∣ θ ) π ( θ ) g ( θ ) } ⋅ g ( θ ) d θ = E g { h ( θ ) p ( x ∣ θ ) π ( θ ) g ( θ ) } ( 4 ) \int h(\theta)p(\boldsymbol{x}|\theta)\pi(\theta)d\theta =\int \left\{\frac{h(\theta)p(\boldsymbol{x}|\theta)\pi(\theta)}{g(\theta)} \right\}\cdot g(\theta) d\theta=E_g\left\{\frac{h(\theta)p(\boldsymbol{x}|\theta)\pi(\theta)}{g(\theta)} \right\} \\\qquad(4) h(θ)p(xθ)π(θ)dθ={ g(θ)h(θ)p(xθ)π(θ)}g(θ)dθ=Eg{ g(θ)h(θ)p(xθ)π(θ)}(4)
同样对于分母:
∫ p ( x ∣ θ ) π ( θ ) d θ = ∫ { p ( x ∣ θ ) π ( θ ) g ( θ ) } ⋅ g ( θ ) d θ = E g { p ( x ∣ θ ) π ( θ ) g ( θ ) } ( 5 ) \int p(\boldsymbol{x}|\theta)\pi(\theta) d\theta= \int \left\{\frac{p(\boldsymbol{x}|\theta)\pi(\theta)}{g(\theta)} \right\}\cdot g(\theta) d\theta=E_g\left\{\frac{p(\boldsymbol{x}|\theta)\pi(\theta)}{g(\theta)} \right\} \q

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值