隐马尔可夫模型(二)

马尔可夫模型的学习,根据训练数据是包括观测序列和对应的状态序列还是只有观测序列,可以分别由监督学习和非监督学习实现。本部分首先介绍监督学习,后介绍非监督学习Baum-Welch算法

监督学习方法

假设已给训练数据包含 s s s个长度相同的观测序列和对应的状态序列 { ( O 1 , I 1 ) , ( O 2 , I 2 ) , ⋯   , ( O s , I s ) } \left\{\left(O_{1}, I_{1}\right),\left(O_{2}, I_{2}\right), \cdots,\left(O_{s}, I_{s}\right)\right\} {(O1,I1),(O2,I2),,(Os,Is)}那么可以用极大似然估计法来估计隐马尔可夫模型的参数。具体方法如下:

  1. 转移概率 a i j a_{ij} aij的估计
    设样本中时刻 t t t处于状态 i i i转移到时刻 t + 1 t+1 t+1状态的频数为 A i j A_{ij} Aij,那么状态转移概率 a i j a_{ij} aij的估计是 a ^ i j = A i j ∑ j = 1 N A i j , i = 1 , 2 , ⋯   , N ; j = 1 , 2 , ⋯   , N \hat{a}_{i j}=\frac{A_{ij}}{\sum_{j=1}^{N} A_{i j}}, \quad i=1,2, \cdots, N ; j=1,2, \cdots, N a^ij=j=1NAijAij,i=1,2,,N;j=1,2,,N
  2. 观测概率 b j ( k ) b_{j}(k) bj(k)的估计
    设样本中状态为 j j j并观测为 k k k的频数是 B j k B_{jk} Bjk,那么状态为 j j j观测为 k k k的概率 b j ( k ) b_{j}(k) bj(k)的估计是 b ^ j ( k ) = B j k ∑ k = 1 M B j k , j = 1 , 2 , ⋯   , N ; k = 1 , 2 , ⋯   , M ( 1 ) \hat{b}_{j}(k)=\frac{B_{j k}}{\sum_{k=1}^{M} B_{j k}}, \quad j=1,2, \cdots, N ; k=1,2, \cdots, M \qquad(1) b^j(k)=k=1MBjkBjk,j=1,2,,N;k=1,2,,M(1)
  3. 初始状态概率 π i \pi_{i} πi的估计 π ^ i \hat{\pi}_{i} π^i S S S个样本中初始状态为 q i q_i qi的频率
    由于监督学习需要使用训练数据,而人工标注训练数据的代价往往会很高,有时会利用非监督学习方法。

aum-Welch算法
假设给定训练数据只包含 S S S个长度为 T T T的观测序列 { O 1 , O 2 , ⋯   , O s } \left\{O_{1}, O_{2}, \cdots, O_{s}\right\} {O1,O2,,Os}而没有对应的状态序列,目标是学习隐马尔可夫模型 λ = ( A , B , π ) \lambda=(A, B, \pi) λ=(A,B,π)的参数,我们将观测序列数据看作观测书记 O O O,状态序列数据看作不可观测的隐数据 I I I,那么隐马尔可夫模型事实上是一个含有隐变量的概率模型 P ( O ; λ ) = ∑ I P ( O ∣ I ; λ ) P ( I ; λ ) ( 2 ) P(O ; \lambda)=\sum_{I} P(O | I;\lambda) P(I ; \lambda)\qquad(2) P(O;λ)=IP(OI;λ)P(I;λ)(2)
其参数学习可有由 EM \text{EM} EM算法实现

  1. 确定完全数据的对数似然函数
    所有观测数据写成 O = ( o 1 , o 2 , ⋯   , o T ) O=\left(o_{1}, o_{2}, \cdots, o_{T}\right) O=(o1,o2,,oT),所有隐数据写成 I = ( i 1 , i 2 , ⋯   , i T ) I=\left(i_{1}, i_{2}, \cdots, i_{T}\right) I=(i1,i2,,iT),完全数据是 ( O , I ) = ( o 1 , o 2 , ⋯   , o T , i 1 , i 2 , ⋯   , i T ) (O, I)=\left(o_{1}, o_{2}, \cdots, o_{T}, i_{1}, i_{2}, \cdots, i_{T}\right) (O,I)=(o1,o2,,oT,i1,i2,,iT),完全数据的对数似然函数是 log ⁡ P ( O , I ; λ ) \log P(O, I ; \lambda) logP(O,I;λ)
  2. EM \text{EM} EM算法中的 E \text{E} E步:求 Q Q Q函数 Q ( λ , λ ‾ ) Q(\lambda, \overline{\lambda}) Q(λ,λ)
    按照 Q Q Q函数的定义 Q ( λ , λ ‾ ) = E t [ log ⁡ P ( O , I ; λ ) ∣ O ; λ ‾ ] Q(\lambda, \overline{\lambda})=E_{t}[\log P(O, I ;\lambda) | O; \overline{\lambda}] Q(λ,λ)=Et[logP(O,I;λ)O;λ]
    略去对 λ \lambda λ而言的常数因子 1 / P ( O ; λ ‾ ) 1 / P(O ; \overline{\lambda}) 1/P(O;λ),得 Q ( λ , λ ‾ ) = ∑ I log ⁡ P ( O , I ; λ ) P ( O , I ; λ ‾ ) ( 3 ) Q(\lambda, \overline{\lambda})=\sum_{I} \log P(O, I ; \lambda) P(O, I ; \overline{\lambda}) \qquad(3) Q(λ,λ)=IlogP(O,I;λ)P(O,I;λ)(3)其中 λ ‾ \overline{\lambda} λ是隐马尔可夫模型参数的当前估计值, λ \lambda λ是要极大化的隐马尔可夫模型参数 P ( O , I ; λ ) = P ( O ∣ I ; λ ) P ( I ; λ ) = π i 1 b i 1 ( o 1 ) a i 1 i 2 b i 2 ( o 2 ) ⋯ a i T − 1 i T b i T ( o T ) P(O, I ; \lambda)=P(O | I ;\lambda) P(I ; \lambda)\\=\pi_{i_{1}} b_{i_{1}}\left(o_{1}\right) a_{i_{1} i_{2}} b_{i_{2}}\left(o_{2}\right)\cdots a_{i_{T-1} i_{T}} b_{i_{T}}\left(o_{T}\right) P(O,I;λ)=P(OI;λ)P(I;λ)=πi1bi1(o1)ai1i2bi2(o2)aiT1iTbiT(oT)于是函数 Q ( λ , λ ‾ ) Q(\lambda, \overline{\lambda}) Q(λ,λ)可以写成: Q ( λ , λ ‾ ) = ∑ I log ⁡ π i 1 P ( O , I ; λ ‾ ) + ∑ I ( ∑ t = 1 T − 1 log ⁡ a i t i t + 1 ) P ( O , I ; λ ‾ ) + ∑ I ( ∑ t = 1 T log ⁡ b i t ( o t ) ) P ( O , I ; λ ‾ ) ( 4 ) Q(\lambda, \overline{\lambda})=\sum_{I} \log \pi_{i_{1}} P(O, I ; \overline{\lambda})\\+\sum_{I}\left(\sum_{t=1}^{T-1} \log a_{i_{t}i_{t+1}}\right) P(O, I ; \overline{\lambda})+\sum_{I}\left(\sum_{t=1}^{T} \log b_{i_{t}}\left(o_{t}\right)\right) P(O, I ; \overline{\lambda})\qquad(4) Q(λ,λ)=Ilogπi1P(O,I;λ)+I(t=1T1logaitit+1)P(O,I;λ)+I(t=1Tlogbit(ot))P(O,I;λ)(4)
    式中求和都是对所有训练数据的序列总长度 T T T进行的
  3. EM \text{EM} EM算法中的 M \text{M} M步:极大化 Q Q Q函数 Q ( λ , λ ‾ ) Q(\lambda, \overline{\lambda}) Q(λ,λ)求模型参数 A , B , π A, B, \pi A,B,π
    由于要极大化的参数在上式 ( 4 ) (4) (4)中单独地出现在 3 3 3个项中,所以只需对各项分别极大化 ( 1 ) (1) (1)上式 ( 4 ) (4) (4)第一项可以写成 ∑ I log ⁡ π i 0 P ( O , I ; λ ‾ ) = ∑ i = 1 N log ⁡ π i P ( O , i 1 = i ; λ ‾ ) \sum_{I} \log \pi_{i_{0}} P(O, I ; \overline{\lambda})=\sum_{i=1}^{N} \log \pi_{i} P\left(O, i_{1}=i ; \overline{\lambda}\right) Ilogπi0P(O,I;λ)=i=1NlogπiP(O,i1=i;λ)注意到 π i \pi_{i} πi满足约束条件 ∑ i = 1 N π i = 1 \sum_{i=1}^{N} \pi_{i}=1 i=1Nπi=1,利用拉格朗日乘子法,写出拉格朗日函数: ∑ i = 1 N log ⁡ π i P ( O , i 1 = i ; λ ‾ ) + γ ( ∑ i = 1 N π i − 1 ) \sum_{i=1}^{N} \log \pi_{i} P\left(O, i_{1}=i ; \overline{\lambda}\right)+\gamma\left(\sum_{i=1}^{N} \pi_{i}-1\right) i=1NlogπiP(O,i1=i;λ)+γ(i=1Nπi1)对其求偏导数并令结果为0 ∂ ∂ π i [ ∑ i = 1 N log ⁡ π i P ( O , i 1 = i ; λ ‾ ) + γ ( ∑ i = 1 N π i − 1 ) ] = 0 ( 5 ) \frac{\partial}{\partial \pi_{i}}\left[\sum_{i=1}^{N} \log \pi_{i} P\left(O, i_{1}=i ;\overline{\lambda}\right)+\gamma\left(\sum_{i=1}^{N} \pi_{i}-1\right)\right]=0\qquad(5) πi[i=1NlogπiP(O,i1=i;λ)+γ(i=1Nπi1)]=0(5) P ( O , i 1 = i ; λ ‾ ) + γ π i = 0 P\left(O, i_{1}=i ; \overline{\lambda}\right)+\gamma \pi_{i}=0 P(O,i1=i;λ)+γπi=0 i i i求和得到 γ \gamma γ γ = − P ( O ; λ ‾ ) \gamma=-P(O ; \overline{\lambda}) γ=P(O;λ) 代入上式得 π i = P ( O , i 1 = i ; λ ‾ ) P ( O ; λ ‾ ) ( 6 ) \pi_{i}=\frac{P\left(O, i_{1}=i ;\overline{\lambda}\right)}{P(O ; \overline{\lambda})} \qquad(6) πi=P(O;λ)P(O,i1=i;λ)(6)
    ( 2 ) (2) (2) ( 4 ) (4) (4)第二项可以写成 ∑ I ( ∑ t = 1 T − 1 log ⁡ a i t , i t + 1 ) P ( O , I ; λ ‾ ) = ∑ i = 1 N ∑ j = 1 N ∑ i = 1 N − 1 log ⁡ a i j P ( O , i t = i , i t + 1 = j ; λ ‾ ) 4 \sum_{I}\left(\sum_{t=1}^{T-1} \log a_{i_{t}, i_{t+1}}\right) P(O, I ; \overline{\lambda})=\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N-1} \log a_{i j} P\left(O, i_{t}=i, i_{t+1}=j ; \overline{\lambda}\right)4 I(t=1T1logait,it+1)P(O,I;λ)=i=1Nj=1Ni=1N1logaijP(O,it=i,it+1=j;λ)4 类似第一项,应用具体约束条件 ∑ j = 1 N a i j = 1 \sum_{j=1}^{N} a_{i j}=1 j=1Naij=1的拉格朗日乘子法可以求出 a i j = ∑ i = 1 T − 1 P ( O , i t = i , i t + 1 = j ; λ ‾ ) ∑ i = 1 T − 1 P ( O , i t = i ; λ ‾ ) a_{i j}=\frac{\sum_{i=1}^{T-1} P\left(O, i_{t}=i, i_{t+1}=j ; \overline{\lambda}\right)}{\sum_{i=1}^{T-1} P\left(O, i_{t}=i ; \overline{\lambda}\right)} aij=i=1T1P(O,it=i;λ)i=1T1P(O,it=i,it+1=j;λ) ( 3 ) (3) (3) ( 4 ) (4) (4)第三项为 ∑ I ( ∑ t = 1 T log ⁡ b i t ( o t ) ) P ( O , I ; λ ‾ ) = ∑ j = 1 N ∑ t = 1 T log ⁡ b j ( o t ) P ( O , i t = j ; λ ‾ ) ( 7 ) \sum_{I}\left(\sum_{t=1}^{T} \log b_{i_{t}}\left(o_{t}\right)\right) P(O, I ; \overline{\lambda})=\sum_{j=1}^{N} \sum_{t=1}^{T} \log b_{j}\left(o_{t}\right) P\left(O, i_{t}=j ;\overline{\lambda}\right) \qquad(7) I(t=1Tlogbit(ot))P(O,I;λ)=j=1Nt=1Tlogbj(ot)P(O,it=j;λ)(7)同样用拉格朗日乘子法,约束条件是 ∑ k = 1 M b j ( k ) = 1 \sum_{k=1}^{M} b_{j}(k)=1 k=1Mbj(k)=1,注意只有在 o t = v k o_{t}=v_{k} ot=vk b j ( o t ) b_{j}\left(o_{t}\right) bj(ot) b j ( k ) b_{j}(k) bj(k)的偏导数才不为 0 0 0,以 I ( o t = v k ) I\left(o_{t}=v_{k}\right) I(ot=vk)表示,求得 b j ( k ) = ∑ i = 1 T P ( O , i t = j ; λ ‾ ) I ( o t = v k ) ∑ i = 1 T P ( O , i t = j ; λ ‾ ) ( 8 ) b_{j}(k)=\frac{\sum_{i=1}^{T} P(O, i_{t}=j ; \overline{\lambda}) I\left(o_{t}=v_{k}\right)}{\sum_{i=1}^{T} P\left(O, i_{t}=j ;\overline{\lambda}\right)} \qquad(8) bj(k)=i=1TP(O,it=j;λ)i=1TP(O,it=j;λ)I(ot=vk)(8)
    Baum-Welch模型参数估计公式
    将式 ( 6 ) − ( 8 ) (6)-(8) (6)(8)中的各概率分别用 γ t ( i ) , ξ i ( i , j ) \gamma_{t}(i), \quad \xi_{i}(i, j) γt(i),ξi(i,j),则可将相应的公式写成: a i j = ∑ i = 1 T − 1 ξ i ( i , j ) ∑ i = 1 T − 1 γ t ( i ) ( 9 ) a_{i j}=\frac{\sum_{i=1}^{T-1} \xi_{i}(i, j)}{\sum_{i=1}^{T-1} \gamma_{t}(i)} \qquad(9) aij=i=1T1γt(i)i=1T1ξi(i,j)(9) b j ( k ) = ∑ t = 1 , o k = y k T γ t ( j ) ∑ i = 1 T γ t ( j ) ( 10 ) b_{j}(k)=\frac{\sum_{t=1, o_{k}=y_{k}}^{T} \gamma_{t}(j)}{\sum_{i=1}^{T} \gamma_{t}(j)} \qquad(10) bj(k)=i=1Tγt(j)t=1,ok=ykTγt(j)(10) π i = γ 1 ( i ) ( 11 ) \pi_{i}=\gamma_{1}(i) \qquad(11) πi=γ1(i)(11) ( 9 ) − ( 11 ) (9)-(11) (9)(11)就是Baum-Welch算法,它是 EM \text{EM} EM算法在隐马尔可夫模型学习中的具体实现。
    预测算法

近似算法
近似算法,在每个时刻 t t t选择在该时刻最有可能出现的状态 i t ∗ i^*_t it,从而得到一个状态序列 I ∗ = ( i 1 ∗ , i 2 ∗ , ⋯   , i T ∗ ) I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) I=(i1,i2,,iT),将它作为预测的结果。
给定隐马尔可夫模型 λ \lambda λ和观测序列 O O O,在时刻 t t t处于状态 q i q_i qi的概率 γ t ( i ) \gamma_{t}(i) γt(i) γ t ( i ) = α t ( i ) β t ( i ) P ( O ; λ ) = α t ( i ) β t ( i ) ∑ i = 1 N α t ( j ) β t ( j ) \gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{P(O ; \lambda)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(j) \beta_{t}(j)} γt(i)=P(O;λ)αt(i)βt(i)=i=1Nαt(j)βt(j)αt(i)βt(i)
在每一时刻 t t t最有可能的状态 i t ∗ i^*_t it i t ∗ = arg ⁡ max ⁡ 1 ⩽ i ⩽ N [ γ t ( i ) ] , t = 1 , 2 , ⋯   , T i_{t}^{*}=\arg \max _{1 \leqslant i \leqslant N}\left[\gamma_{t}(i)\right], \quad t=1,2, \cdots, T it=argmax1iN[γt(i)],t=1,2,,T, 从而得到状态序列 I ∗ = ( i 1 ∗ , i 2 ∗ , ⋯   , i T ∗ ) I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) I=(i1,i2,,iT)
近似算法的优点是计算简单,其缺点是不能保证预测的状态序列整体是最有可能的状态序列,因为预测的状态序列可能有实际不发生的部分。

维比特算法
维比特算法实际是用动态规划解隐马尔可夫模型预测问题,即用动态规划求概率最大路径。这时一条路径对应着一个状态序列。
根据动态规划原理,最优路径具有这样的特性:如果最优路径在时刻 t t t,通过结点 i t ∗ i^*_t it,那么这一路径从结点 i t ∗ i^*_t it到终点 i T ∗ i^*_T iT的部分路径,对于从结点 i t ∗ i^*_t it到终点 i T ∗ i^*_T iT的所有可能的部分路径来说,必须是最优的。
假设不是这样,那么从 i t ∗ i^*_t it i T ∗ i^*_T iT就有另一条更好的部分路径存在,如果把它和从 i 1 ∗ i^*_1 i1 i t ∗ i^*_t it的部分路径连接起来,就会形成一条比原来的路径更优的路径,这是矛盾的。依据这一原理,我们只需从时刻 t = 1 t=1 t=1开始,递推地计算在时刻 t t t状态为 i i i的各条部分路径的最大概率,直至得到时刻 t = T t=T t=T状态为 i i i的各条路径的最大概率。时刻 t = T t=T t=T的最大概率即为最优路径的概率 P ∗ P^* P,最优路径的终结点 i T ∗ i^*_T iT也同时得到。之后,为了找出最优路径的各个结点,从终结点 i T ∗ i^*_T iT开始,由后向前逐步求得结点 i T − 1 ∗ , ⋯   , , ˙ i 1 ∗ i_{T-1}^{*}, \cdots, \dot,i^*_{1} iT1,,,˙i1,得到最优路径 I ∗ = ( i 1 ∗ , i 2 ∗ , ⋯   , i T ∗ ) I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) I=(i1,i2,,iT)
首先导入两个变量 δ \delta δ ψ \psi ψ。定义在时刻 t t t状态为 i i i的所有单个路径 ( i 1 , i 2 , ⋯   , i t ) \left(i_{1}, i_{2}, \cdots, i_{t}\right) (i1,i2,,it)中概率最大值为 δ t ( i ) = max ⁡ i 1 , i 2 , ⋯   , i t − 1 P ( i t = i , i t − 1 , ⋯   , i 1 , o t , ⋯   , o 1 ; λ ) , i = 1 , 2 , ⋯   , N \delta_{t}(i)=\max _{i_{1}, i_{2}, \cdots, i_{t-1}} P\left(i_{t}=i, i_{t-1}, \cdots, i_{1}, o_{t}, \cdots, o_{1} ; \lambda\right), \quad i=1,2, \cdots, N δt(i)=i1,i2,,it1maxP(it=i,it1,,i1,ot,,o1;λ),i=1,2,,N由定义可得变量 δ \delta δ的递推公式: δ t + 1 ( i ) = max ⁡ i 1 , i 2 , ⋯   , i t P ( i t + 1 = i , i t , ⋯   , i 1 , o t + 1 , ⋯   , o 1 ; λ ) = max ⁡ 1 ⩽ j ⩽ N [ δ t ( j ) a j i ] b i ( o t + 1 ) , i = 1 , 2 , ⋯   , N ; t = 1 , 2 , ⋯   , T − 1 \delta_{t+1}(i)=\max _{i_{1}, i_{2}, \cdots, i_{t}} P\left(i_{t+1}=i, i_{t}, \cdots, i_{1}, o_{t+1}, \cdots, o_{1} ; \lambda\right)\\=\max _{1 \leqslant j \leqslant N}\left[\delta_{t}(j) a_{j i}\right] b_{i}\left(o_{t+1}\right), \quad i=1,2, \cdots, N ; t=1,2, \cdots, T-1 δt+1(i)=i1,i2,,itmaxP(it+1=i,it,,i1,ot+1,,o1;λ)=1jNmax[δt(j)aji]bi(ot+1),i=1,2,,N;t=1,2,,T1定义在时刻 t t t状态为 i i i的所有单个路径 ( i 1 , i 2 , ⋯   , i t − 1 , i ) \left(i_{1}, i_{2}, \cdots, i_{t-1}, i\right) (i1,i2,,it1,i)中概率最大的路径的第 t − 1 t-1 t1个结点为 ψ t ( i ) = arg ⁡ max ⁡ 1 ⩽ j ⩽ N [ δ t − 1 ( j ) a j i ] , i = 1 , 2 , ⋯   , N \psi_{t}(i)=\arg \max _{1 \leqslant j \leqslant N}\left[\delta_{t-1}(j) a_{j i}\right], \quad i=1,2, \cdots, N ψt(i)=arg1jNmax[δt1(j)aji],i=1,2,,N维比特算法
输入:模型 λ = ( A , B , π ) \lambda=(A, B, \pi) λ=(A,B,π)和观测 O = ( o 1 , o 2 , ⋯   , o T ) O=\left(o_{1}, o_{2}, \cdots, o_{T}\right) O=(o1,o2,,oT)
输出:最优路径 I ∗ = ( i 1 ∗ , i 2 ∗ , ⋯   , i T ∗ ) I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) I=(i1,i2,,iT)
( 1 ) (1) (1)初始化 δ 1 ( i ) = π i b i ( o 1 ) , i = 1 , 2 , ⋯   , N {\delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right), \quad i=1,2, \cdots, N} δ1(i)=πibi(o1),i=1,2,,N ψ 1 ( i ) = 0 , i = 1 , 2 , ⋯   , N {\psi_{1}(i)=0, \quad i=1,2, \cdots, N} ψ1(i)=0,i=1,2,,N
( 2 ) (2) (2)递推,对 t = 2 , 3 , ⋯   , T t=2,3, \cdots, T t=2,3,,T
δ t ( i ) = max ⁡ 1 ⩽ j ⩽ N [ δ t − 1 ( j ) a j i ] b i ( o t ) , i = 1 , 2 , ⋯   , N \delta_{t}(i)=\max _{1 \leqslant j \leqslant N}\left[\delta_{t-1}(j) a_{j i}\right] b_{i}\left(o_{t}\right), \quad i=1,2, \cdots, N δt(i)=1jNmax[δt1(j)aji]bi(ot),i=1,2,,N ψ t ( i ) = arg ⁡ max ⁡ 1 ∈ j ≤ N [ δ t − 1 ( j ) a j i ] , i = 1 , 2 , ⋯   , N \psi_{t}(i)=\arg \max _{1 \in j \leq N}\left[\delta_{t-1}(j) a_{j i}\right], \quad i=1,2, \cdots, N ψt(i)=arg1jNmax[δt1(j)aji],i=1,2,,N ( 3 ) (3) (3)终止 P ∗ = max ⁡ 1 ⩽ i ⩽ N δ T ( i ) i T ∗ = arg ⁡ max ⁡ 1 ⩽ i ⩽ N [ δ T ( i ) ] {P^{*}=\max _{1 \leqslant i \leqslant N} \delta_{T}(i)} \\{i_{T}^{*}=\arg \max _{1 \leqslant i \leqslant N}\left[\delta_{T}(i)\right]} P=1iNmaxδT(i)iT=arg1iNmax[δT(i)] ( 4 ) (4) (4)最优路径回溯。对 t = T − 1 , T − 2 , ⋯   , 1 t=T-1, T-2, \cdots, 1 t=T1,T2,,1 i t ∗ = ψ t + 1 ( i t + 1 ∗ ) i_{t}^{*}=\psi_{t+1}\left(i_{t+1}^{*}\right) it=ψt+1(it+1)求得最优路径 I ∗ = ( i 1 ∗ , i 2 ∗ , ⋯   , i T ∗ ) I^{*}=\left(i_{1}^{*}, i_{2}^{*}, \cdots, i_{T}^{*}\right) I=(i1,i2,,iT)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值