粒子滤波算法

本文为《蒙特卡罗方法理论和应用》笔记

1.动态空间模型 \textbf{1.动态空间模型} 1.动态空间模型

动态空间模型包括过程模型和观测模型,分别由状态方程和观测方程描述,状态方程和观测方程为:
x ( t ) = a ( x ( t − 1 ) , u ( t ) ) y ( t ) = b ( x ( t ) , v ( t ) ) \begin{aligned} \boldsymbol{x}(t) &=a(\boldsymbol{x}(t-1), \boldsymbol{u}(t)) \\ \boldsymbol{y}(t) &=b(\boldsymbol{x}(t), \boldsymbol{v}(t)) \end{aligned} x(t)y(t)=a(x(t1),u(t))=b(x(t),v(t))
当过程噪音和观测噪音可分离时,状态方程和观测方程为:
x k = a ( x k − 1 , u k ) = a ( x k − 1 ) + u k y k = b ( x k , v k ) = b ( x k ) + v k \begin{aligned} \boldsymbol{x}_{k} &=a\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}\right)=a\left(\boldsymbol{x}_{k-1}\right)+\boldsymbol{u}_{k} \\ \boldsymbol{y}_{k} &=b\left(\boldsymbol{x}_{k}, \boldsymbol{v}_{k}\right)=b\left(\boldsymbol{x}_{k}\right)+\boldsymbol{v}_{k} \end{aligned} xkyk=a(xk1,uk)=a(xk1)+uk=b(xk,vk)=b(xk)+vk
式中,所有下标 k k k表示时刻; a ( x k − 1 , u k ) a(\boldsymbol{x}_{k-1},\boldsymbol{u}_{k}) a(xk1,uk) a ( x k − 1 ) a(\boldsymbol{x}_{k-1}) a(xk1)为过程函数; b ( x k , v k ) b(\boldsymbol{x}_{k},\boldsymbol{v}_{k}) b(xk,vk) b ( x k ) b(\boldsymbol{x}_{k}) b(xk)为观测函数; x k \boldsymbol{x}_k xk x k − 1 \boldsymbol{x}_{k-1} xk1为状态, y k \boldsymbol{y}_{k} yk为观测; u k \boldsymbol{u}_{k} uk为过程噪声; v k \boldsymbol{v}_{k} vk为观测噪声。过程噪声的统计参数为 Q k \boldsymbol{Q}_k Qk ,观测噪声的统计参数为 R k \boldsymbol{R}_k Rk ,对单变量模型 Q k \boldsymbol{Q}_k Qk R k \boldsymbol{R}_k Rk表示方差,对多变量模型 Q k \boldsymbol{Q}_k Qk R k \boldsymbol{R}_k Rk表示协方差。可用统计参数 Q k \boldsymbol{Q}_k Qk R k \boldsymbol{R}_k Rk唯一地描述高斯噪声,但不能唯一地描述非高斯噪声。

2.隐马尔可夫随机过程 \textbf{2.隐马尔可夫随机过程} 2.隐马尔可夫随机过程

序贯随机过程的下一状态不仅与当前状态有关,而且还与以前所有状态都有关。序贯随机过程的概率分布为:
f ( x ) = f ( x 1 ∣ x 1 : 0 ) f ( x 2 ∣ x 1 : 1 ) f ( x 3 ∣ x 1 : 2 ) ⋯ f ( x k ∣ x 1 : k − 1 ) ⋯ f ( x m ∣ x 1 : m − 1 ) f(\boldsymbol{x})=f\left(\boldsymbol{x}_{1} | \boldsymbol{x}_{1: 0}\right) f\left(\boldsymbol{x}_{2} | \boldsymbol{x}_{1: 1}\right) f\left(\boldsymbol{x}_{3} | \boldsymbol{x}_{1: 2}\right) \cdots f\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{1: k-1}\right) \cdots f\left(\boldsymbol{x}_{m} | \boldsymbol{x}_{1: m-1}\right) f(x)=f(x1x1:0)f(x2x1:1)f(x3x1:2)f(xkx1:k1)f(xmx1:m1)
隐马尔可夫随机过程的概率分布为:
f ( x ) = f ( x 1 ∣ x 0 ) f ( x 2 ∣ x 1 ) ⋯ f ( x k ∣ x k − 1 ) ⋯ f ( x m ∣ x m − 1 ) f(\boldsymbol{x})=f\left(\boldsymbol{x}_{1} | \boldsymbol{x}_{0}\right) f\left(\boldsymbol{x}_{2} | \boldsymbol{x}_{1}\right) \cdots f\left(\boldsymbol{x}_{k} | \boldsymbol{x}_{k-1}\right) \cdots f\left(\boldsymbol{x}_{m} | \boldsymbol{x}_{m-1}\right) f(x)=f(x1x0)f(x2x1)f(xkxk1)f(xmxm1)
隐马尔可夫随机过程本身具有马尔可夫性,即无后效性,下一状态只与当前状态有关,与以前状态无关。 x k + 1 \boldsymbol{x}_{k+1} xk+1只与 x k \boldsymbol{x}_k xk 有关,与 x 0 : k − 1 \boldsymbol{x}_{0:k-1} x0:k1无关, y k \boldsymbol{y}_k yk只与 x k \boldsymbol{x}_k xk有关,状态 x \boldsymbol{x} x接受的过程噪声 u \boldsymbol{u} u,观测 y \boldsymbol{y} y观测噪声 v \boldsymbol{v} v.

3.贝叶斯递推滤波 \textbf{3.贝叶斯递推滤波} 3.贝叶斯递推滤波

状态变量 X \boldsymbol{X} X 的先验概率分布为 f ( x ) f(\boldsymbol{\boldsymbol{x}}) f(x) ,观测变量 Y \boldsymbol{Y} Y 的概率分布为 f ( y ∣ x ) f(\boldsymbol{\boldsymbol{y|x}}) f(yx)
故状态变量 X \boldsymbol{X} X 的后验概率分布为
f ( x ∣ y ) = f ( y ∣ x ) f ( x ) ∫ f ( y ∣ x ) f ( x ) d x f(\boldsymbol{x|y})=\frac{f(\boldsymbol{y|x})f(\boldsymbol{x})}{\int f(\boldsymbol{y|x})f(\boldsymbol{x})d\boldsymbol{x} } f(xy)=f(yx)f(x)dxf(yx)f(x)
状态变量的估计值为
x ^ = ∫ x f ( x ∣ y ) d x \hat{\boldsymbol{x}}=\int \boldsymbol{x}f(\boldsymbol{x|y})d\boldsymbol{x} x^=xf(xy)dx
如果后验概率分布 f ( x ∣ y ) f(\boldsymbol{x|y}) f(xy)的分母积分和状态变量估计值的积分都能求解,则可得到状态变量的估计值,称为 贝叶斯估计 \textbf{贝叶斯估计} 贝叶斯估计.

4.贝叶斯递推滤波描述 \textbf{4.贝叶斯递推滤波描述} 4.贝叶斯递推滤波描述

0 : k 0:k 0:k时刻的状态值用 x 0 : k \boldsymbol{x}_{0:k} x0:k表示,
x 0 : k = x 0 , x 1 , ⋯   , x k \boldsymbol{x}_{0:k}=\boldsymbol{x}_0,\boldsymbol{x}_1,\cdots,\boldsymbol{x}_k x0:k=x0,x1,,xk;
1 : k 1:k 1:k时刻的观测值用 y 1 : k \boldsymbol{y}_{1:k} y1:k表示,
y 1 : k = y 1 , y 2 , ⋯   , y k \boldsymbol{y}_{1:k}=\boldsymbol{y}_1,\boldsymbol{y}_2,\cdots,\boldsymbol{y}_k y1:k=y1,y2,,yk.
贝叶斯递推滤波是给定所有观测值 y 1 : k \boldsymbol{y}_{1:k} y1:k构造状态 x 0 : k \boldsymbol{x}_{0:k} x0:k的后验概率分布,贝叶斯递推滤波分为 预 测 阶 段 ‾ \underline{预测阶段} 更 新 阶 段 ‾ \underline{更新阶段} .

预测阶段 \textbf{预测阶段} 预测阶段,预测阶段主要基于 x k − 1 \boldsymbol{x}_{k-1} xk1预测 x k \boldsymbol{x}_k xk 预测方程为: f ( x 0 : k ∣ y 1 : k − 1 ) = ∫ f ( x 0 : k ∣ x 0 : k − 1 ) f ( x 0 : k − 1 ∣ y 1 : k − 1 ) d x 0 : k − 1 f\left(\boldsymbol{x}_{0: k} | \boldsymbol{y}_{1: k-1}\right)=\int f\left(\boldsymbol{x}_{0: k} | \boldsymbol{x}_{0: k-1}\right) f\left(\boldsymbol{x}_{0: k-1} | \boldsymbol{y}_{1: k-1}\right) \mathrm{d} \boldsymbol{x}_{0: k-1} f(x0:ky1:k1)=f(x0:kx0:k1)f(x0:k1y1:k1)dx0:k1

更新阶段 \textbf{更新阶段} 更新阶段,更新阶段主要根据 y k \boldsymbol{y}_k yk更新 x k \boldsymbol{x}_k xk. 根据贝叶斯定理,后验概率分布为
f ( x 0 : k ∣ y 1 : k ) = f ( y 1 : k ∣ x 0 : k ) f ( x 0 : k ) / f ( y 1 : k ) f\left(\boldsymbol{x}_{0: k} | \boldsymbol{y}_{1: k}\right)=f\left(\boldsymbol{y}_{1: k} | \boldsymbol{x}_{0: k}\right) f\left(\boldsymbol{x}_{0: k}\right) / f\left(\boldsymbol{y}_{1: k}\right) f(x0:ky1:k)=f(y1:kx0:k)f(x0:k)/f(y1:k)
式中, f ( y 1 : k ) = ∫ f ( y 1 : k ∣ x 0 : k ) f ( x 0 :

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值