Copula,最小二乘法及lasso回归, 岭回归

本文介绍了Copula函数,包括Sklar定理、多元正态、t-Copula和阿基米德Copula,强调了它们在处理边缘分布不同且相关性的随机变量建模中的重要性。此外,还探讨了收缩方法,如最小二乘法、岭回归和lasso回归,以及图Lasso方法在数据挖掘和机器学习中的角色。
摘要由CSDN通过智能技术生成

之前讨论班准备的笔记,截取部分保存起来。
很低沉的一天。

C o p u l a Copula Copula函数

当边缘分布(marginal probability distribution)不同的随机变量(random variable),互相之间并不独立的时候,此时对于联合分布的建模会变得十分困难。此时,在已知多个已知边缘分布的随机变量下,Copula函数则是一个非常好的工具来对其相关性进行建模。

Copula理论首先在1959年由Sklar提出,指一个 n n n维联合分布函数可以由 n n n个边缘分布函数和一个Copula函数组成。Nelsen(1999)给出了Copula函数的严格定义。

S k l a r Sklar Sklar定理(1959)

Sklar定理主要指令 F ( ⋅ , ⋯   , ⋅ ) F(\cdot,\cdots,\cdot) F(,,)为具有边缘分布 F 1 ( ⋅ ) , F 2 ( ⋅ ) , ⋯   , F n ( ⋅ ) F_{1}(\cdot), F_{2}(\cdot), \cdots, F_{n}(\cdot) F1(),F2(),,Fn()的联合分布函数,那么存在一个将边缘分布和联合分布“连接”起来Copula函数 C ( ⋅ , ⋯   , ⋅ ) C(\cdot,\cdots,\cdot) C(,,)满足:
F ( x 1 , x 2 , ⋯   , x n ) = C ( F 1 ( x 1 ) , F 2 ( x 2 ) , ⋯   , F N ( x n ) ) F\left(x_{1}, x_{2}, \cdots, x_{n}\right)=C\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right), \cdots, F_{N}\left(x_{n}\right)\right) F(x1,x2,,xn)=C(F1(x1),F2(x2),,FN(xn))
F 1 ( ⋅ ) , F 2 ( ⋅ ) , ⋯   , F n ( ⋅ ) F_{1}(\cdot), F_{2}(\cdot), \cdots, F_{n}(\cdot) F1(),F2(),,Fn()连续,则 C ( ⋅ , ⋯   , ⋅ ) C(\cdot,\cdots,\cdot) C(,,)唯一确定; 反之,若 F 1 ( ⋅ ) , F 2 ( ⋅ ) , ⋯   , F n ( ⋅ ) F_{1}(\cdot), F_{2}(\cdot), \cdots, F_{n}(\cdot) F1(),F2(),,Fn()为一元分布, C ( ⋅ , ⋯   , ⋅ ) C(\cdot,\cdots,\cdot) C(,,)为相应的Copula函数,那么由上式定义的函数 F ( ⋅ , ⋯   , ⋅ ) F(\cdot,\cdots,\cdot) F(,,)是具有边缘分布 F 1 ( ⋅ ) , F 2 ( ⋅ ) , ⋯   , F n ( ⋅ ) F_{1}(\cdot), F_{2}(\cdot), \cdots, F_{n}(\cdot) F1(),F2(),,Fn()的联合分布函数。

多元正态 C o p u l a Copula Copula 函数

n n n元正态 C o p u l a Copula Copula 分布函数的表达式为:
C ( u 1 , u 2 , … , u n ; ρ ) = ϕ ρ ( ϕ − 1 ( u 1 ) , ϕ − 1 ( u 2 ) , … , ϕ − 1 ( u n ) ) C(u_1,u_2,\dots,u_n;\rho)= \phi_{\rho}(\phi^{-1}(u_1), \phi^{-1}(u_2),\dots,\phi^{-1}(u_n)) C(u1,u2,,un;ρ)=ϕρ(ϕ1(u1),ϕ1(u2),,ϕ1(un))
其中 ρ \rho ρ为对角线上的元素为1的对称正定矩阵, ϕ ρ ( ⋅ , ⋯   , ⋅ ) \phi_{\rho}(\cdot,\cdots,\cdot) ϕρ(,,)是相关系数矩阵为 ρ \rho ρ的标准多元正态分布函数, ϕ − 1 ( ⋅ ) \phi^{-1}(\cdot) ϕ1() ϕ ( ⋅ ) \phi(\cdot) ϕ()的逆函数。

多元 t − C o p u l a t-Copula tCopula 函数

C ( u 1 , u 2 , … , u n ; ρ ) = T ρ , v ( T v − 1 ( u 1 ) , T v − 1 ( u 2 ) , … , T v − 1 ( u n ) ) C(u_1,u_2,\dots,u_n;\rho)= T_{\rho,v}(T^{-1}_v(u_1), T^{-1}_v(u_2),\dots,T^{-1}_v(u_n)) C(u1,u2,,un;ρ)=Tρ,v(Tv1(u1),Tv1(u2),,Tv1(un))
其中 ρ \rho ρ为对角线上的元素为1的对称正定矩阵, T ρ , v ( ⋅ , ⋯   , ⋅ ) T_{\rho,v}(\cdot,\cdots,\cdot) Tρ,v(,,)表示相关系数矩阵为 ρ \rho ρ、自由度为 v v v的标准多元 t t t分布函数, T v − 1 ( ⋅ ) T_v^{-1}(\cdot) Tv1() T v ( ⋅ ) T_v(\cdot) Tv()的逆函数。

阿基米德 C o p u l a Copula Copula 函数

阿基米德Copula( Archimedean Copula)分布函数表达式为:
C ( u 1 , u 2 , ⋯   , u n ) = ϕ − 1 ( ϕ ( u 1 ) + ϕ ( u 2 ) + ⋯ + ϕ ( u n ) ) C\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\phi^{-1}\left(\phi\left(u_{1}\right)+\phi\left(u_{2}\right)+

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值