LeetCode刷题-684. 冗余连接

力扣刷题笔记(六)

684. 冗余连接

难度:中等⭐️⭐️⭐️⭐️

题目

树可以看成是一个连通且 无环 的 无向 图。

给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。

请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的边。

示例 1:

在这里插入图片描述

输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]

示例 2:

在这里插入图片描述

输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]

提示:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • edges 中无重复元素
  • 给定的图是连通的

代码

  • 并查集
class Solution {
    public int[] findRedundantConnection(int[][] edges) {
        int n = edges.length;
        int[] parent = new int[n + 1];
        for (int i = 1; i <= n; i++) {
            parent[i] = i;
        }
        for (int[] edge : edges) {
            if (find(parent, edge[0]) != find(parent, edge[1])) {
                union(parent, edge[0], edge[1]);
            } else {
                return edge;
            }
        }
        return new int[0];
    }
    private void union(int[] parent, int x, int y) {
        // 把x合并到y所在的集合。x的父节点被改为y的父节点
        parent[find(parent, x)] = parent[find(parent, y)];
    }
    private int find(int[] parent, int x) {
        if (parent[x] != x) {
            // 路径压缩
            parent[x] = find(parent, parent[x]);
        }
        return parent[x];
    }
}

笔记

  • 并查集:可以通过并查集寻找附加的边。初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。
    如果两个顶点属于不同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间不连通,因此当前的边不会导致环出现,合并这两个顶点的连通分量。
    如果两个顶点属于相同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间已经连通,因此当前的边导致环出现,为附加的边,将当前的边作为答案返回。
  • 并查集:https://labuladong.github.io/algo/2/20/50/
    https://oi-wiki.org/ds/dsu/

我开源了一份武林秘籍,欢迎⭐️star:

创作不易,喜欢的话加个关注点个赞,❤谢谢谢谢❤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值