力扣刷题笔记(六)
684. 冗余连接
难度:中等⭐️⭐️⭐️⭐️
题目
树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的边。
示例 1:
输入: edges = [[1,2], [1,3], [2,3]]
输出: [2,3]
示例 2:
输入: edges = [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
提示:
- n == edges.length
- 3 <= n <= 1000
- edges[i].length == 2
- 1 <= ai < bi <= edges.length
- ai != bi
- edges 中无重复元素
- 给定的图是连通的
代码
- 并查集
class Solution {
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;
int[] parent = new int[n + 1];
for (int i = 1; i <= n; i++) {
parent[i] = i;
}
for (int[] edge : edges) {
if (find(parent, edge[0]) != find(parent, edge[1])) {
union(parent, edge[0], edge[1]);
} else {
return edge;
}
}
return new int[0];
}
private void union(int[] parent, int x, int y) {
// 把x合并到y所在的集合。x的父节点被改为y的父节点
parent[find(parent, x)] = parent[find(parent, y)];
}
private int find(int[] parent, int x) {
if (parent[x] != x) {
// 路径压缩
parent[x] = find(parent, parent[x]);
}
return parent[x];
}
}
笔记
- 并查集:可以通过并查集寻找附加的边。初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。
如果两个顶点属于不同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间不连通,因此当前的边不会导致环出现,合并这两个顶点的连通分量。
如果两个顶点属于相同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间已经连通,因此当前的边导致环出现,为附加的边,将当前的边作为答案返回。 - 并查集:https://labuladong.github.io/algo/2/20/50/ 、
https://oi-wiki.org/ds/dsu/
我开源了一份武林秘籍,欢迎⭐️star:
创作不易,喜欢的话加个关注点个赞,❤谢谢谢谢❤