EM算法

EM算法

EM算法基本思想

​ 最大期望算法(Expectation-Maximization algorithm, EM),是一类通过迭代进行极大似然估计的优化算法,通常作为牛顿迭代法的替代,用于对包含隐变量或缺失数据的概率模型进行参数估计。

​ 最大期望算法基本思想是经过两个步骤交替进行计算:

​ 第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值

​ 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。

​ M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行。

EM算法推导

​ 对于 m m m个样本观察数据 x = ( x 1 , x 2 , . . . , x m ) x=(x^{1},x^{2},...,x^{m}) x=(x1,x2,...,xm),现在想找出样本的模型参数 θ \theta θ,其极大化模型分布的对数似然函数为:
θ = arg ⁡ max ⁡ θ ∑ i = 1 m l o g P ( x ( i ) ; θ ) \theta = \mathop{\arg\max}_\theta\sum\limits_{i=1}^m logP(x^{(i)};\theta) θ=argmaxθi=1mlogP(x(i);θ)
如果得到的观察数据有未观察到的隐含数据 z = ( z ( 1 ) , z ( 2 ) , . . . z ( m ) ) z=(z^{(1)},z^{(2)},...z^{(m)}) z=(z(1),z(2),...z(m)),极大化模型分布的对数似然函数则为:
(a) θ = arg ⁡ max ⁡ θ ∑ i = 1 m l o g P ( x ( i ) ; θ ) = arg ⁡ max ⁡ θ ∑ i = 1 m l o g ∑ z ( i ) P ( x ( i ) , z ( i ) ; θ ) \theta =\mathop{\arg\max}_\theta\sum\limits_{i=1}^m logP(x^{(i)};\theta) = \mathop{\arg\max}_\theta\sum\limits_{i=1}^m log\sum\limits_{z^{(i)}}P(x^{(i)}, z^{(i)};\theta) \tag{a} θ=argmaxθi=1mlogP(x(i);θ)=argmaxθi=1mlogz(i)P(x(i),z(i);θ)(a)
由于上式不能直接求出 θ \theta θ,采用缩放技巧:
∑ i = 1 m l o g ∑ z ( i ) P ( x ( i ) , z ( i ) ; θ ) = ∑ i = 1 m l o g ∑ z ( i ) Q i ( z ( i ) ) P ( x ( i ) , z ( i ) ; θ ) Q i ( z ( i ) ) ⩾ ∑ i = 1 m ∑ z ( i ) Q i ( z ( i ) ) l o g P ( x ( i ) , z ( i ) ; θ ) Q i ( z ( i ) ) \sum\limits_{i=1}^m log\sum\limits_{z^{(i)}}P(x^{(i)}, z^{(i)};\theta) = \sum\limits_{i=1}^m log\sum\limits_{z^{(i)}}Q_i(z^{(i)})\frac{P(x^{(i)}, z^{(i)};\theta)}{Q_i(z^{(i)})} \\ \geqslant \sum\limits_{i=1}^m \sum\limits_{z^{(i)}}Q_i(z^{(i)})log\frac{P(x^{(i)}, z^{(i)};\theta)}{Q_i(z^{(i)})} i=1mlogz(i)P(x(i),z(i);θ)=i=1mlogz(i)Qi(z(i))Qi(z(i))P(x(i),z(i);θ)i=1mz(i)Qi(z(i))logQi(z(i))P(x(i),z(i);θ)
上式用到了Jensen不等式:
l o g ∑ j λ j y j ⩾ ∑ j λ j l o g y j      , λ j ⩾ 0 , ∑ j λ j = 1 log\sum\limits_j\lambda_jy_j \geqslant \sum\limits_j\lambda_jlogy_j\;\;, \lambda_j \geqslant 0, \sum\limits_j\lambda_j =1 logjλjyjjλjlogyj,λj0,jλj=1
并且引入了一个未知的新分布 Q i ( z ( i ) ) Q_i(z^{(i)}) Qi(z(i))

此时,如果需要满足Jensen不等式中的等号,所以有:
P ( x ( i ) , z ( i ) ; θ ) Q i ( z ( i ) ) = c , c 为 常 数 \frac{P(x^{(i)}, z^{(i)};\theta)}{Q_i(z^{(i)})} =c, c为常数 Qi(z(i))P(x(i),z(i);θ)=c,c
由于 Q i ( z ( i ) ) Q_i(z^{(i)}) Qi(z(i))是一个分布,所以满足
∑ z Q i ( z ( i ) ) = 1 \sum\limits_{z}Q_i(z^{(i)}) =1 zQi(z(i))=1
综上,可得:
Q i ( z ( i ) ) = P ( x ( i ) , z ( i ) ; θ ) ∑ z P ( x ( i ) , z ( i ) ; θ ) = P ( x ( i ) , z ( i ) ; θ ) P ( x ( i ) ; θ ) = P ( z ( i ) ∣ x ( i ) ; θ ) Q_i(z^{(i)}) = \frac{P(x^{(i)}, z^{(i)};\theta)}{\sum\limits_{z}P(x^{(i)}, z^{(i)};\theta)} = \frac{P(x^{(i)}, z^{(i)};\theta)}{P(x^{(i)};\theta)} = P( z^{(i)}|x^{(i)};\theta) Qi(z(i))=zP(x(i),z(i);θ)P(x(i)z(i);θ)=P(x(i);θ)P(x(i),z(i);θ)=P(z(i)x(i);θ)
如果 Q i ( z ( i ) ) = P ( z ( i ) ∣ x ( i ) ; θ ) Q_i(z^{(i)}) = P( z^{(i)}|x^{(i)};\theta) Qi(z(i))=P(z(i)x(i);θ) ,则第(1)式是我们的包含隐藏数据的对数似然的一个下界。如果我们能极大化这个下界,则也在尝试极大化我们的对数似然。即我们需要最大化下式:
arg ⁡ max ⁡ θ ∑ i = 1 m ∑ z ( i ) Q i ( z ( i ) ) l o g P ( x ( i ) , z ( i ) ; θ ) Q i ( z ( i ) ) \mathop{\arg\max}_\theta \sum\limits_{i=1}^m \sum\limits_{z^{(i)}}Q_i(z^{(i)})log\frac{P(x^{(i)}, z^{(i)};\theta)}{Q_i(z^{(i)})} argmaxθi=1mz(i)Qi(z(i))logQi(z(i))P(x(i)z(i);θ)
简化得:
arg ⁡ max ⁡ θ ∑ i = 1 m ∑ z ( i ) Q i ( z ( i ) ) l o g P ( x ( i ) , z ( i ) ; θ ) \mathop{\arg\max}_\theta \sum\limits_{i=1}^m \sum\limits_{z^{(i)}}Q_i(z^{(i)})log{P(x^{(i)}, z^{(i)};\theta)} argmaxθi=1mz(i)Qi(z(i))logP(x(i),z(i);θ)
以上即为EM算法的M步, ∑ z ( i ) Q i ( z ( i ) ) l o g P ( x ( i ) , z ( i ) ; θ ) ​ \sum\limits_{z^{(i)}}Q_i(z^{(i)})log{P(x^{(i)}, z^{(i)};\theta)}​ z(i)Qi(z(i))logP(x(i),z(i);θ)可理解为 l o g P ( x ( i ) , z ( i ) ; θ ) logP(x^{(i)}, z^{(i)};\theta) logP(x(i),z(i);θ)基于条件概率分布 Q i ( z ( i ) ) Q_i(z^{(i)}) Qi(z(i))的期望。以上即为EM算法中E步和M步的具体数学含义。

图解EM算法

​ 考虑上一节中的(a)式,表达式中存在隐变量,直接找到参数估计比较困难,通过EM算法迭代求解下界的最大值到收敛为止。

在这里插入图片描述

​ 图片中的紫色部分是我们的目标模型 p ( x ∣ θ ) p(x|\theta) p(xθ),该模型复杂,难以求解析解,为了消除隐变量 z ( i ) z^{(i)} z(i)的影响,我们可以选择一个不包含 z ( i ) z^{(i)} z(i)的模型 r ( x ∣ θ ) r(x|\theta) r(xθ),使其满足条件 r ( x ∣ θ ) ⩽ p ( x ∣ θ ) r(x|\theta) \leqslant p(x|\theta) r(xθ)p(xθ)

求解步骤如下:

(1)选取 θ 1 \theta_1 θ1,使得 r ( x ∣ θ 1 ) = p ( x ∣ θ 1 ) r(x|\theta_1) = p(x|\theta_1) r(xθ1)=p(xθ1),然后对此时的 r r r求取最大值,得到极值点 θ 2 \theta_2 θ2,实现参数的更新。

(2)重复以上过程到收敛为止,在更新过程中始终满足 r ⩽ p r \leqslant p rp.

EM算法流程

输入:观察数据 x = ( x ( 1 ) , x ( 2 ) , . . . x ( m ) ) x=(x^{(1)},x^{(2)},...x^{(m)}) x=(x(1),x(2),...x(m)),联合分布 p ( x , z ; θ ) p(x,z ;\theta) p(x,z;θ),条件分布 p ( z ∣ x ; θ ) p(z|x; \theta) p(zx;θ),最大迭代次数 J J J

1)随机初始化模型参数 θ \theta θ的初值 θ 0 \theta^0 θ0

2) f o r   j   f r o m   1   t o   J for \ j \ from \ 1 \ to \ J for j from 1 to J

​ a) E步。计算联合分布的条件概率期望:
Q i ( z ( i ) ) = P ( z ( i ) ∣ x ( i ) , θ j ) Q_i(z^{(i)}) = P( z^{(i)}|x^{(i)}, \theta^{j}) Qi(z(i))=P(z(i)x(i),θj)

L ( θ , θ j ) = ∑ i = 1 m ∑ z ( i ) P ( z ( i ) ∣ x ( i ) , θ j ) l o g P ( x ( i ) , z ( i ) ; θ ) L(\theta, \theta^{j}) = \sum\limits_{i=1}^m\sum\limits_{z^{(i)}}P( z^{(i)}|x^{(i)}, \theta^{j})log{P(x^{(i)}, z^{(i)};\theta)} L(θ,θj)=i=1mz(i)P(z(i)x(i),θj)logP(x(i),z(i);θ)

​ b) M步。极大化 L ( θ , θ j ) L(\theta, \theta^{j}) L(θ,θj),得到 θ j + 1 \theta^{j+1} θj+1:
θ j + 1 = arg ⁡ max ⁡ θ L ( θ , θ j ) \theta^{j+1} = \mathop{\arg\max}_\theta L(\theta, \theta^{j}) θj+1=argmaxθL(θ,θj)
​ c) 如果 θ j + 1 \theta^{j+1} θj+1收敛,则算法结束。否则继续回到步骤a)进行E步迭代。

输出:模型参数 θ ​ \theta​ θ

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cpp编程小茶馆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值