【数值分析 - 3. 特征分解】

矩阵分解

矩阵分解

矩阵分解(或称为矩阵因式分解)是线性代数中的一个重要概念,在许多领域如机器学习、数据分析、信号处理等都有广泛应用。下面是10种常见的矩阵分解方法:

  1. 奇异值分解(SVD)

    • 将任意矩阵 A A A 分解成三个矩阵的乘积 U Σ V T U \Sigma V^T UΣVT,其中 U U U V V V 是正交矩阵, Σ \Sigma Σ 是一个对角矩阵。
  2. 特征分解(Eigenvalue Decomposition)

    • 适用于方阵,将矩阵 A A A 分解为 Q Λ Q − 1 Q \Lambda Q^{-1} QΛQ1,其中 Q Q Q 包含特征向量, Λ \Lambda Λ 是对角矩阵,其元素是对应的特征值。
  3. QR 分解

    • 将矩阵 A A A 表示为正交矩阵 Q Q Q 和上三角矩阵 R R R 的乘积,即 A = Q R A = QR A=QR
  4. LU 分解

    • 将矩阵 A A A 分解为下三角矩阵 L L L 和上三角矩阵 U U U 的乘积,即 A = L U A = LU A=LU。有时还会引入置换矩阵 P P P 来保证分解成功,即 P A = L U PA = LU PA=LU
  5. Cholesky 分解

    • 针对对称正定矩阵 A A A,将其分解为下三角矩阵 L L L 和其转置 L T L^T LT 的乘积,即 A = L L T A = LL^T A=LLT
  6. 极分解(Polar Decomposition)

    • 将矩阵 A A A 分解为正交矩阵 U U U 和半正定对称矩阵 P P P 的乘积,即 A = U P A = UP A=UP A = P U A = PU A=PU
  7. 非负矩阵分解(NMF)

    • 对于非负矩阵 A A A,找到非负矩阵 W W W H H H,使得 A ≈ W H A \approx WH AWH,这在数据挖掘和模式识别中有应用。
  8. 稀疏编码(Sparse Coding)

    • 类似于 NMF,但是目标是让矩阵的一个因子尽可能稀疏,通常用于信号处理和机器学习中的特征学习。
  9. 核范数最小化(Nuclear Norm Minimization)

    • 一种优化问题,用于低秩矩阵恢复或补全,通过最小化矩阵的核范数来逼近原始矩阵。
  10. 张量分解(Tensor Decomposition)

    • 虽然严格意义上不是矩阵分解,但在高维数据分析中,将多维数组(张量)分解为多个低秩张量的乘积也是一种常见技术,如 CANDECOMP/PARAFAC (CP) 分解或 Tucker 分解。

每种分解都有其特定的应用场景和优势,选择哪种分解取决于具体的问题和数据特性。

矩阵分解的应用场景

不同的矩阵分解方法因其各自的特性和数学性质,在实际应用中有着不同的用途。以下是这些方法在不同场景中的典型应用:

  1. 奇异值分解(SVD)

    • 应用场景:降维、数据压缩、图像处理、推荐系统、文本分析中的主题建模。
    • 优点:能够揭示数据的主要成分,并且可以去除噪声。
  2. 特征分解(Eigenvalue Decomposition)

    • 应用场景:稳定性分析、主成分分析(PCA)、谱聚类。
    • 优点:能够帮助理解矩阵的内在结构,特别是对于对称矩阵非常有用。
  3. QR 分解

    • 应用场景:解决最小二乘问题、数值线性代数中的多项式拟合、信号处理。
    • 优点:QR 分解保证了正交性,有助于减少数值误差。
  4. LU 分解

    • 应用场景:求解线性方程组、计算行列式、逆矩阵。
    • 优点:简化了求解过程,特别是当需要多次求解同一系数矩阵的不同常数项时。
  5. Cholesky 分解

    • 应用场景:高效地求解线性方程组、最优化问题、概率论与统计学中的协方差矩阵。
    • 优点:对于对称正定矩阵来说,计算速度快且数值稳定。
  6. 极分解(Polar Decomposition)

    • 应用场景:机器人学中的运动学、计算机图形学中的变换。
    • 优点:提供了矩阵旋转和平移部分的明确分离。
  7. 非负矩阵分解(NMF)

    • 应用场景:图像处理、音频信号处理、文档分类。
    • 优点:结果具有解释性,因为所有元素都是非负的,这有助于理解数据的自然成分。
  8. 稀疏编码(Sparse Coding)

    • 应用场景:图像识别、音频处理、生物信息学。
    • 优点:能够从过完备字典中学习到稀疏表示,有利于特征选择和降噪。
  9. 核范数最小化(Nuclear Norm Minimization)

    • 应用场景:低秩矩阵恢复、推荐系统、系统辨识。
    • 优点:在数据缺失的情况下仍然能够恢复出完整的矩阵。
  10. 张量分解(Tensor Decomposition)

    • 应用场景:多维数据分析、社交网络分析、多媒体数据融合。
    • 优点:可以处理高维数据结构,捕捉到数据之间的复杂关系。

在选择合适的矩阵分解方法时,需要考虑数据的性质(例如是否非负、是否对称)、所需的计算效率、以及最终的应用需求。

1. 矩阵的特征分解

特征分解(Eigenvalue Decomposition),也称为谱分解(Spectral Decomposition),是一种***将矩阵分解为其特征值和特征向量的过程。这种分解仅适用于方阵***,并且对于非对称矩阵,只有在矩阵是可对角化的条件下才成立。下面是特征分解的具体过程和一个计算示例。

1.1 特征分解的过程

  1. 计算特征值

    • 计算矩阵 A A A 的特征值,即求解特征多项式 det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0 的根,其中 λ \lambda λ 是特征值, I I I 是单位矩阵。
  2. 计算特征向量

    • 对于每个特征值 λ i \lambda_i λi,求解方程 ( A − λ i I ) v i = 0 (A - \lambda_i I)v_i = 0 (AλiI)vi=0,得到对应的特征向量 v i v_i vi。这个方程的解空间(除了零向量外)就是特征向量。
  3. 形成特征向量矩阵

    • 将所有特征向量作为列向量组成矩阵 Q Q Q
  4. 形成对角矩阵

    • 将所有特征值放在对角线上形成对角矩阵 Λ \Lambda Λ
  5. 组合分解结果

    • 最终得到的分解形式为 A = Q Λ Q − 1 A = Q \Lambda Q^{-1} A=QΛQ1,其中 Q Q Q 是由特征向量组成的正交矩阵(如果 A A A 是对称矩阵, Q Q Q 就是酉矩阵), Λ \Lambda Λ 是包含特征值的对角矩阵

1.2 计算示例

假设我们有一个 2 × 2 2 \times 2 2×2 的矩阵 A A A
A = ( 1 2 2 1 ) A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} A=(1221)

  1. 计算特征值

    • 解决特征多项式 det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0
      det ⁡ ( 1 − λ 2 2 1 − λ ) = ( 1 − λ ) 2 − 4 = λ 2 − 2 λ − 3 = 0 \det\begin{pmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{pmatrix} = (1-\lambda)^2 - 4 = \lambda^2 - 2\lambda - 3 = 0 det(1λ221λ)=(1λ)24=λ22λ3=0
    • 求解二次方程得到特征值 λ 1 = 3 , λ 2 = − 1 \lambda_1 = 3, \lambda_2 = -1 λ1=3,λ2=1
  2. 计算特征向量

    • 对于 λ 1 = 3 \lambda_1 = 3 λ1=3,解方程 ( A − 3 I ) v 1 = 0 (A - 3I)v_1 = 0 (A3I)v1=0
      ( − 2 2 2 − 2 ) ( x y ) = ( 0 0 ) \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} (2222)(xy)=(00)
      • 得到 x = y x = y x=y,因此一个可能的特征向量为 v 1 = ( 1 1 ) v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} v1=(11)
    • 对于 λ 2 = − 1 \lambda_2 = -1 λ2=1,解方程 ( A + I ) v 2 = 0 (A + I)v_2 = 0 (A+I)v2=0
      ( 2 2 2 2 ) ( x y ) = ( 0 0 ) \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} (2222)(xy)=(00)
      • 得到 x = − y x = -y x=y,因此一个可能的特征向量为 v 2 = ( 1 − 1 ) v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} v2=(11)
  3. 形成特征向量矩阵

    • 将特征向量作为列向量组成矩阵 Q Q Q
      Q = ( 1 1 1 − 1 ) Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} Q=(1111)
  4. 形成对角矩阵

    • 形成对角矩阵 Λ \Lambda Λ
      Λ = ( 3 0 0 − 1 ) \Lambda = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} Λ=(3001)
  5. 组合分解结果

    • 因此, A A A 可以分解为:
      A = Q Λ Q − 1 A = Q \Lambda Q^{-1} A=QΛQ1

这里, Q − 1 Q^{-1} Q1 Q Q Q 的逆矩阵,可以通过求解来得到。由于 Q Q Q 是正交矩阵, Q − 1 = Q T Q^{-1} = Q^T Q1=QT,即:
Q T = ( 1 1 1 − 1 ) T = ( 1 1 1 − 1 ) Q^T = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^T = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} QT=(1111)T=(1111)

因此,最终的分解形式为:
A = ( 1 1 1 − 1 ) ( 3 0 0 − 1 ) ( 1 1 1 − 1 ) T A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^T A=(1111)(3001)(1111)T

这就是特征分解的具体过程和一个简单的计算示例。

2. 斐波那契数列的矩阵表示、特征分解、数列通解

2.1 斐波那契数列

斐波那契数列是一个著名的数列,定义如下:

F ( n ) = F ( n − 1 ) + F ( n − 2 ) F(n) = F(n-1) + F(n-2) F(n)=F(n1)+F(n2)
F ( 0 ) = 0 , F ( 1 ) = 1 F(0) = 0, \quad F(1) = 1 F(0)=0,F(1)=1

我们可以用矩阵的形式来表示斐波那契数列,这样可以更容易地推导出数列的通项公式。

2.2 矩阵表示

为了用矩阵表示斐波那契数列,我们可以定义一个 2 × 2 2 \times 2 2×2 的矩阵 A A A 和一个 2 × 1 2 \times 1 2×1 的向量 F n F_n Fn,其中 F n F_n Fn 表示第 n n n 个斐波那契数和第 n − 1 n-1 n1 个斐波那契数的列向量。定义如下:

F n = ( F ( n ) F ( n − 1 ) ) F_n = \begin{pmatrix} F(n) \\ F(n-1) \end{pmatrix} Fn=(F(n)F(n1))

根据斐波那契数列的定义,我们有:

F ( n + 1 ) = F ( n ) + F ( n − 1 ) F(n+1) = F(n) + F(n-1) F(n+1)=F(n)+F(n1)

这可以写成矩阵形式:

F n + 1 = A F n F_{n+1} = A F_n Fn+1=AFn

其中,

A = ( 1 1 1 0 ) A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} A=(1110)

因此,

F n + 1 = ( F ( n + 1 ) F ( n ) ) = ( 1 1 1 0 ) ( F ( n ) F ( n − 1 ) ) F_{n+1} = \begin{pmatrix} F(n+1) \\ F(n) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F(n) \\ F(n-1) \end{pmatrix} Fn+1=(F(n+1)F(n))=(1110)(F(n)F(n1))

2.3 特征分解

接下来,我们进行特征分解。首先计算矩阵 A A A 的特征值和特征向量。

计算特征值

要找到矩阵 A A A 的特征值,我们需要解方程:

det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0

det ⁡ ( 1 − λ 1 1 − λ ) = ( 1 − λ ) ( − λ ) − 1 = λ 2 − λ − 1 = 0 \det\begin{pmatrix} 1-\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = (1-\lambda)(-\lambda) - 1 = \lambda^2 - \lambda - 1 = 0 det(1λ11λ)=(1λ)(λ)1=λ2λ1=0

特征值 λ \lambda λ 为方程的解:

λ = 1 ± 5 2 \lambda = \frac{1 \pm \sqrt{5}}{2} λ=21±5

λ 1 = 1 + 5 2 \lambda_1 = \frac{1 + \sqrt{5}}{2} λ1=21+5 λ 2 = 1 − 5 2 \lambda_2 = \frac{1 - \sqrt{5}}{2} λ2=215

计算特征向量

对于每个特征值,我们需要找到相应的特征向量。

  • 对于 λ 1 = 1 + 5 2 \lambda_1 = \frac{1 + \sqrt{5}}{2} λ1=21+5 ,解方程 ( A − λ 1 I ) v 1 = 0 (A - \lambda_1 I)v_1 = 0 (Aλ1I)v1=0

    ( 1 − 1 + 5 2 1 1 − 1 + 5 2 ) v 1 = 0 \begin{pmatrix} 1 - \frac{1 + \sqrt{5}}{2} & 1 \\ 1 & -\frac{1 + \sqrt{5}}{2} \end{pmatrix} v_1 = 0 (121+5 1121+5 )v1=0

    这简化为:

    ( − 5 2 1 1 − 1 + 5 2 ) v 1 = 0 \begin{pmatrix} -\frac{\sqrt{5}}{2} & 1 \\ 1 & -\frac{1 + \sqrt{5}}{2} \end{pmatrix} v_1 = 0 (25 1121+5 )v1=0

    解得一个可能的特征向量 v 1 = ( 5 − 1 2 1 ) v_1 = \begin{pmatrix} \frac{\sqrt{5} - 1}{2} \\ 1 \end{pmatrix} v1=(25 11)

  • 对于 λ 2 = 1 − 5 2 \lambda_2 = \frac{1 - \sqrt{5}}{2} λ2=215 ,解方程 ( A − λ 2 I ) v 2 = 0 (A - \lambda_2 I)v_2 = 0 (Aλ2I)v2=0

    ( 1 − 1 − 5 2 1 1 − 1 − 5 2 ) v 2 = 0 \begin{pmatrix} 1 - \frac{1 - \sqrt{5}}{2} & 1 \\ 1 & -\frac{1 - \sqrt{5}}{2} \end{pmatrix} v_2 = 0 (1215 11215 )v2=0

    这简化为:

    ( 5 2 1 1 − 1 − 5 2 ) v 2 = 0 \begin{pmatrix} \frac{\sqrt{5}}{2} & 1 \\ 1 & -\frac{1 - \sqrt{5}}{2} \end{pmatrix} v_2 = 0 (25 11215 )v2=0

    解得一个可能的特征向量 v 2 = ( − 5 − 1 2 1 ) v_2 = \begin{pmatrix} \frac{-\sqrt{5} - 1}{2} \\ 1 \end{pmatrix} v2=(25 11)

形成特征向量矩阵

将特征向量作为列向量组成矩阵 Q Q Q

Q = ( 5 − 1 2 − 5 − 1 2 1 1 ) Q = \begin{pmatrix} \frac{\sqrt{5} - 1}{2} & \frac{-\sqrt{5} - 1}{2} \\ 1 & 1 \end{pmatrix} Q=(25 1125 11)

形成对角矩阵

形成对角矩阵 Λ \Lambda Λ

Λ = ( 1 + 5 2 0 0 1 − 5 2 ) \Lambda = \begin{pmatrix} \frac{1 + \sqrt{5}}{2} & 0 \\ 0 & \frac{1 - \sqrt{5}}{2} \end{pmatrix} Λ=(21+5 00215 )

组合分解结果

最终得到的特征分解形式为:

A = Q Λ Q − 1 A = Q \Lambda Q^{-1} A=QΛQ1

其中, Q Q Q 是由特征向量组成的矩阵, Λ \Lambda Λ​ 是对角矩阵,包含了特征值。通过这种方式,我们可以更方便地分析斐波那契数列的性质,并利用矩阵幂来快速计算斐波那契数列的任意一项。

2.4 数列通解

已知初始条件 X 0 = ( 0 , 1 ) X_0= (0,1) X0=(0,1)

则斐波那契数列的通解为

X n = A n X 0 = Q Λ n Q − 1 X 0 X_n = A^n X_0= Q \Lambda^n Q^{-1} X_0 Xn=AnX0=QΛnQ1X0

= ( 5 − 1 2 − 5 − 1 2 1 1 ) ( 1 + 5 2 0 0 1 − 5 2 ) n ( 5 − 1 2 − 5 − 1 2 1 1 ) − 1 ( 0 , 1 ) = \begin{pmatrix} \frac{\sqrt{5} - 1}{2} & \frac{-\sqrt{5} - 1}{2} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1 + \sqrt{5}}{2} & 0 \\ 0 & \frac{1 - \sqrt{5}}{2} \end{pmatrix}^n \begin{pmatrix} \frac{\sqrt{5} - 1}{2} & \frac{-\sqrt{5} - 1}{2} \\ 1 & 1 \end{pmatrix}^{-1} (0,1) =(25 1125 11)(21+5 00215 )n(25 1125 11)1(0,1) 来快速计算任意时刻的状态 X n X_n Xn

3. 二阶齐次线性差分方程的矩阵表示、特征分解、方程通解

3.1 二阶齐次线性差分方程

二阶齐次线性差分方程可以用来描述很多离散系统的动态行为。这类方程的一般形式可以写作:

x n + 2 = a x n + 1 + b x n x_{n+2} = a x_{n+1} + b x_n xn+2=axn+1+bxn

这里 a a a b b b 是常数, x n x_n xn 是序列的第 n n n 项。

3.2 矩阵表示

为了将这个差分方程转换成矩阵形式,我们可以定义一个新的向量 X n X_n Xn,它包含了当前项和前一项:

X n = ( x n + 1 x n ) X_n = \begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix} Xn=(xn+1xn)

那么下一个状态 X n + 1 X_{n+1} Xn+1 可以表示为当前状态 X n X_n Xn 乘以一个矩阵 A A A

X n + 1 = A X n X_{n+1} = A X_n Xn+1=AXn

其中矩阵 A A A 定义为:

A = ( a b 1 0 ) A = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} A=(a1b0)

这意味着:

X n + 1 = ( x n + 2 x n + 1 ) = ( a b 1 0 ) ( x n + 1 x n ) = ( a x n + 1 + b x n x n + 1 ) X_{n+1} = \begin{pmatrix} x_{n+2} \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix} = \begin{pmatrix} ax_{n+1} + bx_n \\ x_{n+1} \end{pmatrix} Xn+1=(xn+2xn+1)=(a1b0)(xn+1xn)=(axn+1+bxnxn+1)

3.3 特征分解

为了进一步分析这个系统,我们可以对矩阵 A A A 进行特征分解。特征分解可以帮助我们理解系统的长期行为,并且可以使计算变得更为简单。

计算特征值

首先,我们需要找到矩阵 A A A 的特征值。特征值 λ \lambda λ 是满足以下特征方程的解:

det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0

对于矩阵 A A A,我们有:

det ⁡ ( ( a b 1 0 ) − λ ( 1 0 0 1 ) ) = det ⁡ ( ( a − λ b 1 − λ ) ) = 0 \det\left(\begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = \det\left(\begin{pmatrix} a-\lambda & b \\ 1 & -\lambda \end{pmatrix}\right) = 0 det((a1b0)λ(1001))=det((aλ1bλ))=0

计算行列式:

( a − λ ) ( − λ ) − b = 0 (a - \lambda)(-\lambda) - b = 0 (aλ)(λ)b=0

λ 2 − a λ − b = 0 \lambda^2 - a\lambda - b = 0 λ2b=0

解这个二次方程,我们得到两个特征值 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2

λ 1 , 2 = a ± a 2 + 4 b 2 \lambda_{1,2} = \frac{a \pm \sqrt{a^2 + 4b}}{2} λ1,2=2a±a2+4b

计算特征向量

对于每个特征值 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2,我们可以通过解方程 ( A − λ I ) v = 0 (A - \lambda I) v = 0 (AλI)v=0 来找到对应的特征向量 v v v

  • 对于 λ 1 \lambda_1 λ1,解方程:

    ( a − λ 1 b 1 − λ 1 ) ( v 1 v 2 ) = 0 \begin{pmatrix} a - \lambda_1 & b \\ 1 & -\lambda_1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0 (aλ11bλ1)(v1v2)=0

  • 对于 λ 2 \lambda_2 λ2,解方程:

    ( a − λ 2 b 1 − λ 2 ) ( v 1 v 2 ) = 0 \begin{pmatrix} a - \lambda_2 & b \\ 1 & -\lambda_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0 (aλ21bλ2)(v1v2)=0

假设我们得到了两个独立的特征向量 v 1 v_1 v1 v 2 v_2 v2

形成特征向量矩阵

将特征向量作为列向量组成矩阵 Q Q Q

Q = ( v 11 v 21 v 12 v 22 ) Q = \begin{pmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{pmatrix} Q=(v11v12v21v22)

形成对角矩阵

形成对角矩阵 Λ \Lambda Λ

Λ = ( λ 1 0 0 λ 2 ) \Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} Λ=(λ100λ2)

组合分解结果

最终得到的特征分解形式为:

A = Q Λ Q − 1 A = Q \Lambda Q^{-1} A=QΛQ1

这里的 Q Q Q 是由特征向量组成的矩阵, Λ \Lambda Λ 是对角矩阵,包含了特征值。通过特征分解,我们可以更容易地分析系统的稳定性以及其他动力学性质。

3.4 方程通解

如果我们知道初始条件 X 0 X_0 X0,我们可以通过 X n = A n X 0 = Q Λ n Q − 1 X 0 X_n = A^n X_0= Q \Lambda^n Q^{-1} X_0 Xn=AnX0=QΛnQ1X0 来快速计算任意时刻的状态 X n X_n Xn​。

推导过程:

X n = A X n − 1 = A 2 X n − 2 = . . . = A n X 0 X_n = AX_{n-1} = A^2 X_{n-2} =... = A^n X_0 Xn=AXn1=A2Xn2=...=AnX0

= ( Q Λ Q − 1 ) n X 0 = (Q \Lambda Q^{-1})^n X_0 =(QΛQ1)nX0

= ( Q Λ Q − 1 ) ( Q Λ Q − 1 ) . . . ( Q Λ Q − 1 ) X 0 = (Q \Lambda Q^{-1})(Q \Lambda Q^{-1})...(Q \Lambda Q^{-1}) X_0 =(QΛQ1)(QΛQ1)...(QΛQ1)X0

= ( Q Λ ) ( Q − 1 Q ) ( Λ ) ( Q − 1 Q ) . . . ( Q − 1 Q ) ( Λ Q − 1 ) X 0 = (Q \Lambda) (Q^{-1}Q) (\Lambda) (Q^{-1}Q)...(Q^{-1}Q) (\Lambda Q^{-1}) X_0 =(QΛ)(Q1Q)(Λ)(Q1Q)...(Q1Q)(ΛQ1)X0

= ( Q Λ ) ( I ) ( Λ ) ( I ) . . . ( I ) ( Λ Q − 1 ) X 0 = (Q \Lambda) (I) (\Lambda) (I)...(I) (\Lambda Q^{-1}) X_0 =(QΛ)(I)(Λ)(I)...(I)(ΛQ1)X0

= Q Λ n Q − 1 X 0 = Q \Lambda^n Q^{-1} X_0 =QΛnQ1X0

= ( v 11 v 21 v 12 v 22 ) ( λ 1 0 0 λ 2 ) n ( v 11 v 21 v 12 v 22 ) − 1 X 0 = \begin{pmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}^n \begin{pmatrix} v_{11} & v_{21} \\ v_{12} & v_{22} \end{pmatrix}^{-1} X_0 =(v11v12v21v22)(λ100λ2)n(v11v12v21v22)1X0

4. n阶齐次线性差分方程的矩阵表示、特征分解、方程通解

4.1 n阶齐次线性差分方程

n阶齐次线性差分方程可以表示为:

x n + k = a k − 1 x n + k − 1 + a k − 2 x n + k − 2 + ⋯ + a 1 x n + 1 + a 0 x n x_{n+k} = a_{k-1} x_{n+k-1} + a_{k-2} x_{n+k-2} + \cdots + a_1 x_{n+1} + a_0 x_n xn+k=ak1xn+k1+ak2xn+k2++a1xn+1+a0xn

其中 a 0 , a 1 , … , a k − 1 a_0, a_1, \ldots, a_{k-1} a0,a1,,ak1 是常数系数。

4.2 矩阵表示

为了将这个差分方程转换为矩阵形式,我们可以定义一个 k k k 维的向量 X n X_n Xn,它包含了当前项及其前 k − 1 k-1 k1 项:

X n = ( x n + k − 1 x n + k − 2 ⋮ x n + 1 x n ) X_n = \begin{pmatrix} x_{n+k-1} \\ x_{n+k-2} \\ \vdots \\ x_{n+1} \\ x_n \end{pmatrix} Xn= xn+k1xn+k2xn+1xn

这样,下一个状态 X n + 1 X_{n+1} Xn+1 可以表示为当前状态 X n X_n Xn 乘以一个 k × k k \times k k×k 的矩阵 A A A

X n + 1 = A X n X_{n+1} = A X_n Xn+1=AXn

矩阵 A A A 的形式如下:也称为***递推式的伴生矩阵(companion matrix of recurrence)***

A = ( a k − 1 a k − 2 a k − 3 ⋯ a 1 a 0 1 0 0 ⋯ 0 0 0 1 0 ⋯ 0 0 ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ 0 0 0 ⋯ 1 0 ) A = \begin{pmatrix} a_{k-1} & a_{k-2} & a_{k-3} & \cdots & a_1 & a_0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix} A= ak1100ak2010ak3000a1001a0000

这意味着:

X n + 1 = ( x n + k x n + k − 1 ⋮ x n + 2 x n + 1 ) = ( a k − 1 a k − 2 a k − 3 ⋯ a 1 a 0 1 0 0 ⋯ 0 0 0 1 0 ⋯ 0 0 ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ 0 0 0 ⋯ 1 0 ) ( x n + k − 1 x n + k − 2 ⋮ x n + 1 x n ) X_{n+1} = \begin{pmatrix} x_{n+k} \\ x_{n+k-1} \\ \vdots \\ x_{n+2} \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} a_{k-1} & a_{k-2} & a_{k-3} & \cdots & a_1 & a_0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n+k-1} \\ x_{n+k-2} \\ \vdots \\ x_{n+1} \\ x_n \end{pmatrix} Xn+1= xn+kxn+k1xn+2xn+1 = ak1100ak2010ak3000a1001a0000 xn+k1xn+k2xn+1xn

4.3 特征分解

为了进行特征分解,我们需要找到矩阵 A A A 的特征值和特征向量。

计算特征值

首先,我们需要找到矩阵 A A A 的特征值。特征值 λ \lambda λ 是满足以下特征方程的解:

det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0

对于矩阵 A A A,我们有:

det ⁡ ( ( a k − 1 − λ a k − 2 a k − 3 ⋯ a 1 a 0 1 − λ 0 ⋯ 0 0 0 1 − λ ⋯ 0 0 ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ 0 0 0 ⋯ 1 − λ ) ) = 0 \det\left(\begin{pmatrix} a_{k-1} - \lambda & a_{k-2} & a_{k-3} & \cdots & a_1 & a_0 \\ 1 & -\lambda & 0 & \cdots & 0 & 0 \\ 0 & 1 & -\lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -\lambda \end{pmatrix}\right) = 0 det ak1λ100ak2λ10ak30λ0a1001a000λ =0

这个行列式的结果是一个 k k k 阶的多项式,称为特征多项式:

p ( λ ) = ( − 1 ) k ( λ k − a k − 1 λ k − 1 − a k − 2 λ k − 2 − ⋯ − a 1 λ − a 0 ) p(\lambda) = (-1)^k (\lambda^k - a_{k-1} \lambda^{k-1} - a_{k-2} \lambda^{k-2} - \cdots - a_1 \lambda - a_0) p(λ)=(1)k(λkak1λk1ak2λk2a1λa0)

解这个多项式方程,我们得到 k k k 个特征值 λ 1 , λ 2 , … , λ k \lambda_1, \lambda_2, \ldots, \lambda_k λ1,λ2,,λk

计算特征向量

对于每个特征值 λ i \lambda_i λi,我们可以通过解方程 ( A − λ i I ) v i = 0 (A - \lambda_i I) v_i = 0 (AλiI)vi=0 来找到对应的特征向量 v i v_i vi。每个特征向量 v i v_i vi 是一个 k k k 维向量。

形成特征向量矩阵

将特征向量作为列向量组成矩阵 Q Q Q

Q = ( v 1 v 2 ⋯ v k ) Q = \begin{pmatrix} v_{1} & v_{2} & \cdots & v_{k} \end{pmatrix} Q=(v1v2vk)

形成对角矩阵

形成对角矩阵 Λ \Lambda Λ,其中对角线上的元素是特征值:

Λ = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ k ) \Lambda = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{pmatrix} Λ= λ1000λ2000λk

组合分解结果

最终得到的特征分解形式为:

A = Q Λ Q − 1 A = Q \Lambda Q^{-1} A=QΛQ1

这里的 Q Q Q 是由特征向量组成的矩阵, Λ \Lambda Λ 是对角矩阵,包含了特征值。

4.4 方程通解

通过这种方法,我们可以更方便地分析 n 阶齐次线性差分方程的行为,并且可以利用矩阵的幂来快速计算差分方程的解。如果矩阵 A A A 可以对角化,那么我们可以通过对角化后的形式更容易地求解 X n X_n Xn,即:

X n = A n X 0 = ( Q Λ Q − 1 ) n X 0 = Q Λ n Q − 1 X 0 X_n = A^n X_0 = (Q \Lambda Q^{-1})^n X_0 = Q \Lambda^n Q^{-1} X_0 Xn=AnX0=(QΛQ1)nX0=QΛnQ1X0

这样,我们只需要计算对角矩阵 Λ \Lambda Λ 的幂,然后通过矩阵乘法得到 X n X_n Xn

5. 二阶齐次线性微分方程的矩阵表示、特征分解、方程通解

5.1 二阶齐次线性微分方程

二阶齐次线性微分方程可以表示为:

y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 y'' + p(x)y' + q(x)y = 0 y′′+p(x)y+q(x)y=0

5.2 矩阵表示

为了将这样的微分方程转换为矩阵形式,我们可以使用一个技巧,即通过引入辅助变量来将二阶方程转化为一阶向量方程。

y 1 = y y_1 = y y1=y,那么 y 1 ′ = y ′ y_1' = y' y1=y。再设 y 2 = y ′ y_2 = y' y2=y,则有 y 2 ′ = y ′ ′ y_2' = y'' y2=y′′。因此原方程可以写作:

y 2 ′ + p ( x ) y 2 + q ( x ) y 1 = 0 y_2' + p(x)y_2 + q(x)y_1 = 0 y2+p(x)y2+q(x)y1=0

现在我们有了两个方程:

y 1 ′ = y 2 y_1' = y_2 y1=y2
y 2 ′ = − q ( x ) y 1 − p ( x ) y 2 y_2' = -q(x)y_1 - p(x)y_2 y2=q(x)y1p(x)y2

可以将这两个方程组合成一个一阶向量微分方程:

( y 1 ′ y 2 ′ ) = ( 0 1 − q ( x ) − p ( x ) ) ( y 1 y 2 ) \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -q(x) & -p(x) \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} (y1y2)=(0q(x)1p(x))(y1y2)

或者用更简洁的矩阵形式表示为:

Y ′ ( x ) = A ( x ) Y ( x ) \mathbf{Y}'(x) = A(x)\mathbf{Y}(x) Y(x)=A(x)Y(x)

其中,

Y ( x ) = ( y 1 ( x ) y 2 ( x ) ) , A ( x ) = ( 0 1 − q ( x ) − p ( x ) ) \mathbf{Y}(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}, \quad A(x) = \begin{pmatrix} 0 & 1 \\ -q(x) & -p(x) \end{pmatrix} Y(x)=(y1(x)y2(x)),A(x)=(0q(x)1p(x))

5.3 特征分解

如果 p ( x ) p(x) p(x) q ( x ) q(x) q(x) 是常数,则矩阵 A A A 也是常数矩阵,此时可以通过求解矩阵 A A A 的特征值和特征向量来进行特征分解。

对于常系数矩阵 A A A,其特征值 λ \lambda λ 满足特征方程:

det ⁡ ( A − λ I ) = 0 \det(A - \lambda I) = 0 det(AλI)=0

其中 I I I 是单位矩阵。对于给定的 A A A,解这个二次方程得到 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2​。

5.4 方程通解

假设 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2 A A A 的特征值,对应的特征向量分别为 v 1 \mathbf{v}_1 v1 v 2 \mathbf{v}_2 v2,那么解的一般形式为:

Y ( x ) = c 1 e λ 1 x v 1 + c 2 e λ 2 x v 2 \mathbf{Y}(x) = c_1 e^{\lambda_1 x}\mathbf{v}_1 + c_2 e^{\lambda_2 x}\mathbf{v}_2 Y(x)=c1eλ1xv1+c2eλ2xv2

其中 c 1 c_1 c1 c 2 c_2 c2 是积分常数,取决于初始条件。根据 Y ( x ) \mathbf{Y}(x) Y(x) 的定义, y ( x ) y(x) y(x) 就是 Y ( x ) \mathbf{Y}(x) Y(x) 的第一个分量,即 y ( x ) = c 1 e λ 1 x v 11 + c 2 e λ 2 x v 21 y(x) = c_1 e^{\lambda_1 x}v_{11} + c_2 e^{\lambda_2 x}v_{21} y(x)=c1eλ1xv11+c2eλ2xv21,其中 v 11 v_{11} v11 v 21 v_{21} v21 分别是特征向量 v 1 \mathbf{v}_1 v1 v 2 \mathbf{v}_2 v2 的第一个分量。

6. n阶齐次线性微分方程的矩阵表示、特征分解、方程通解

6.1 n 阶齐次线性微分方程

对于一个 n 阶齐次线性微分方程:

y ( n ) + a n − 1 ( x ) y ( n − 1 ) + ⋯ + a 1 ( x ) y ′ + a 0 ( x ) y = 0 , y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = 0, y(n)+an1(x)y(n1)++a1(x)y+a0(x)y=0,

6.2 矩阵表示

我们可以将其转换为一个 n 维向量的一阶系统。为此,我们定义新的变量 y i y_i yi (i=1, 2, …, n) 如下:

y 1 = y , y_1 = y, y1=y,
y 2 = y ′ , y_2 = y', y2=y,
y 3 = y ′ ′ , y_3 = y'', y3=y′′,
⋮ \vdots
y n = y ( n − 1 ) . y_n = y^{(n-1)}. yn=y(n1).

这样,原方程可以重新写为一组 n 个一阶微分方程:

y 1 ′ = y 2 , y_1' = y_2, y1=y2,
y 2 ′ = y 3 , y_2' = y_3, y2=y3,
⋮ \vdots
y n − 1 ′ = y n , y_{n-1}' = y_n, yn1=yn,
y n ′ = − a 0 ( x ) y 1 − a 1 ( x ) y 2 − ⋯ − a n − 1 ( x ) y n . y_n' = -a_0(x)y_1 - a_1(x)y_2 - \cdots - a_{n-1}(x)y_n. yn=a0(x)y1a1(x)y2an1(x)yn.

这些方程可以写成矩阵形式:

y ′ ( x ) = A ( x ) y ( x ) , \mathbf{y}'(x) = A(x)\mathbf{y}(x), y(x)=A(x)y(x),

其中,

y ( x ) = ( y 1 ( x ) y 2 ( x ) ⋮ y n ( x ) ) , \mathbf{y}(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix}, y(x)= y1(x)y2(x)yn(x) ,

并且

A ( x ) = ( 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 − a 0 ( x ) − a 1 ( x ) − a 2 ( x ) ⋯ − a n − 1 ( x ) ) . A(x) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0(x) & -a_1(x) & -a_2(x) & \cdots & -a_{n-1}(x) \end{pmatrix}. A(x)= 000a0(x)100a1(x)010a2(x)001an1(x) .

6.3 特征分解

如果 a i ( x ) a_i(x) ai(x)(i=0, 1, …, n-1)都是常数,那么矩阵 A A A 也是常数矩阵,此时可以进行特征分解。

特征值 λ \lambda λ 可以通过解以下特征方程找到:

det ⁡ ( A − λ I ) = 0 , \det(A - \lambda I) = 0, det(AλI)=0,

其中 I I I 是 n×n 的单位矩阵。

解得 λ \lambda λ 后,可以找到对应的特征向量 v \mathbf{v} v

6.4 方程通解

如果 λ i \lambda_i λi v i \mathbf{v}_i vi 分别是 A A A 的特征值和特征向量,则解的一般形式可以表示为:

y ( x ) = ∑ i = 1 n c i e λ i x v i , \mathbf{y}(x) = \sum_{i=1}^{n} c_i e^{\lambda_i x} \mathbf{v}_i, y(x)=i=1ncieλixvi,

其中 c i c_i ci 是常数,由初始条件确定。

需要注意的是,当特征值是复数或多重根时,解的形式会有所不同,并且可能需要使用广义特征向量或其他方法来构造完整的解集。此外,如果系数不是常数,那么情况会复杂得多,通常需要其他技术来求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值