AM@高阶导数求导法则和常用的初等函数的高阶导数公式

abstract

  • 高阶导数求导法则
  • 常用的初等函数的高阶导数
  • 这部分内容为泰勒公式作铺垫,特别是幂型高阶导数

高阶导数

二阶导数

  • 如果函数的导数 f ′ ( x )   f'(x)\, f(x) x   x\, x处可导,则称 [ f ′ ( x ) ] ′   [f'(x)]'\, [f(x)] x   x\, x的二阶导数。记做: f ′ ′ ( x )   f''(x)\, f′′(x) y ′ ′   y''\, y′′ d 2 y d x 2 \frac{{\rm{d}}^2 y}{{\rm{d}}x^2} dx2d2y d 2 f ( x ) d x 2 \frac{{\rm{d}}^2 f(x)}{{\rm{d}}x^2} dx2d2f(x)
  • 二阶导数可用于求解函数凹凸性问题。 f ′ ′ ( x ) > 0 {\displaystyle f''(x)>0} f′′(x)>0函数在x上凹。 f ′ ′ ( x ) < 0 {\displaystyle f''(x)<0} f′′(x)<0函数在x下凹。

高阶导数

  • 二阶导数的导数称为三阶导数,记做 f ′ ′ ′ ( x )   f'''(x)\, f′′′(x) y ′ ′ ′   y'''\, y′′′ d 3 y d x 3 \frac{{\rm{d}}^3 y}{{\rm{d}}x^3} dx3d3y d 3 f ( x ) d x 3 \frac{{\rm{d}}^3 f(x)}{{\rm{d}}x^3} dx3d3f(x)
  • 三阶导数的导数称为四阶导数,记做 f ( 4 ) ( x )   f^{(4)}(x)\, f(4)(x) y ( 4 )   y^{(4)}\, y(4) d 4 y d x 4 \frac{{\rm{d}}^4 y}{{\rm{d}}x^4} dx4d4y d 4 f ( x ) d x 4 \frac{{\rm{d}}^4 f(x)}{{\rm{d}}x^4} dx4d4f(x)
  • 一般的 f ( x )   f(x)\, f(x) n − 1   n-1\, n1阶导数的导数称为 f ( x )   f(x)\, f(x) n   n\, n阶导数,记为 f ( n ) ( x )   f^{(n)}(x)\, f(n)(x) y ( n )   y^{(n)}\, y(n) d n y d x n \frac{{\rm{d}}^n y}{{\rm{d}}x^n} dxndny d n f ( x ) d x n \frac{{\rm{d}}^n f(x)}{{\rm{d}}x^n} dxndnf(x)

高阶导数的求法

一般来说,高阶导数的计算和导数一样,可以按照定义逐步求出。同时,高阶导数也有求导法则:

  • d n d x n ( u ± v ) = d n d x n u ± d n d x n v \frac{{\rm{d}}^n}{{\rm{d}}x^n}(u\pm v)=\frac{{\rm{d}}^n}{{\rm{d}}x^n}u\pm \frac{{\rm{d}}^n}{{\rm{d}}x^n}v dxndn(u±v)=dxndnu±dxndnv

  • d n d x n ( C u ) = C d n d x n u \frac{{\rm{d}}^n}{{\rm{d}}x^n} (Cu)=C\frac{{\rm{d}}^n}{{\rm{d}}x^n}u dxndn(Cu)=Cdxndnu

  • d n d x n ( u ⋅ v ) = ∑ k = 0 n C k n d n − k d x n − k u d k d x k v \frac{{\rm{d}}^n}{{\rm{d}}x^n}(u\cdot v)=\sum_{k=0}^n C_k^n\frac{{\rm{d}}^{n-k}}{{\rm{d}}x^{n-k}}u\frac{{\rm{d}}^k}{{\rm{d}}x^k}v dxndn(uv)=k=0nCkndxnkdnkudxkdkv(莱布尼兹公式)

常用高阶导数公式👺

  1. d n d x n x α = x α − n ∏ k = 0 n − 1 ( α − k ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}x^{\alpha}=x^{\alpha-n}\prod_{k=0}^{n-1}(\alpha-k) dxndnxα=xαnk=0n1(αk)
  2. d n d x n 1 x = ( − 1 ) n n ! x n + 1 \frac{{\rm{d}}^n}{{\rm{d}}x^n}\frac{1}{x}=(-1)^{n}\frac{n!}{x^{n+1}} dxndnx1=(1)nxn+1n!
  3. d n d x n ln ⁡ x = ( − 1 ) n − 1 ( n − 1 ) ! x n \frac{{\rm{d}}^n}{{\rm{d}}x^n}\ln x=(-1)^{n-1}\frac{(n-1)!}{x^n} dxndnlnx=(1)n1xn(n1)!; d n d x n ln ⁡ ( 1 + x ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}\ln(1+x) dxndnln(1+x)= ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n (-1)^{n-1}\frac{(n-1)!}{(1+x)^{n}} (1)n1(1+x)n(n1)!
  4. d n d x n e x = e x \frac{{\rm{d}}^n}{{\rm{d}}x^n}e^x=e^x dxndnex=ex
  5. d n d x n a x = a x ⋅ ln ⁡ n a \frac{{\rm{d}}^n}{{\rm{d}}x^n} a^x=a^x \cdot \ln^n a dxndnax=axlnna ( a > 0 ) (a>0) (a>0)
  6. d n d x n sin ⁡ ( k x + b ) = k n sin ⁡ ( k x + b + n π 2 ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}\sin \left(kx+b\right)=k^n\sin \left(kx+b+\frac{n\pi}{2}\right) dxndnsin(kx+b)=knsin(kx+b+2)
  7. d n d x n cos ⁡ ( k x + b ) = k n cos ⁡ ( k x + b + n π 2 ) \frac{{\rm{d}}^n}{{\rm{d}}x^n}\cos \left(kx+b\right)=k^n\cos \left(kx+b+\frac{n\pi}{2}\right) dxndncos(kx+b)=kncos(kx+b+2)

函数和一次函数复合后的导数👺

  • 根据复合函数求导法则,有 ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n)= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)

  • 这就是说,如果求得 f ( n ) ( x ) f^{(n)}(x) f(n)(x),则可以直接得到 ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n)= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)

    • 如果一次式用 k x + b kx+b kx+b表示,公式为 ( f ( k x + b ) ) ( n ) (f(kx+b))^{(n)} (f(kx+b))(n)= k n f ( n ) ( k x + b ) k^{n}f^{(n)}(kx+b) knf(n)(kx+b)(1)
  • n n n ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n)
    0 f ( a x + b ) f(ax+b) f(ax+b)
    1 1 1 f ′ ( a x + b ) ⋅ a f'(ax+b)\cdot{a} f(ax+b)a
    2 2 2 f ′ ′ ( a x + b ) ⋅ a 2 f''(ax+b)\cdot{a^2} f′′(ax+b)a2
    ⋯ \cdots ⋯ \cdots
    n n n f ( n ) ( a x + b ) ⋅ a n f^{(n)}(ax+b)\cdot{a^{n}} f(n)(ax+b)an= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)

指数型

  • n n n ( a x ) ( n ) (a^{x})^{(n)} (ax)(n)
    1 a x ln ⁡ a a^{x}\ln{a} axlna
    2 a x ln ⁡ 2 a a^{x}\ln^{2}{a} axln2a
    3 a x ln ⁡ 3 a a^{x}\ln^{3}{a} axln3a
    ⋯ \cdots ⋯ \cdots
    n a x ln ⁡ n a a^{x}\ln^{n}{a} axlnna
  • 由公式(1), ( a k x ) ( n ) (a^{kx})^{(n)} (akx)(n)= k n a k x ln ⁡ n a k^{n}a^{kx}\ln^{n}{a} knakxlnna

  • a = e a=e a=e时, ( e x ) ( n ) (e^{x})^{(n)} (ex)(n)= e x e^{x} ex; ( e k x ) ( n ) (e^{kx})^{(n)} (ekx)(n)= k n e k x k^{n}e^{kx} knekx

三角型

正弦型函数

  • f ( x ) = sin ⁡ ( x ) f(x)=\sin(x) f(x)=sin(x)
    • ( sin ⁡ x ) ′ (\sin{x})' (sinx)= cos ⁡ x \cos{x} cosx= sin ⁡ ( x + π 2 ) \sin(x+\frac{\pi}{2}) sin(x+2π)(0)
  • 对式(0)两边求导,得 ( sin ⁡ x ) ′ ′ (\sin{x})'' (sinx)′′= sin ⁡ ( ( x + π 2 ) + π 2 ) \sin((x+\frac{\pi}{2})+\frac{\pi}{2}) sin((x+2π)+2π)= sin ⁡ ( x + 2 ⋅ π 2 ) \sin(x+2\cdot\frac{\pi}{2}) sin(x+22π)
    • 类似的, ( sin ⁡ x ) ( 3 ) (\sin{x})^{(3)} (sinx)(3)= sin ⁡ ( x + 2 ⋅ π 2 + π 2 ) \sin(x+2\cdot\frac{\pi}{2}+\frac{\pi}{2}) sin(x+22π+2π)= sin ⁡ ( x + 3 ⋅ π 2 ) \sin(x+3\cdot\frac{\pi}{2}) sin(x+32π)
    • ( sin ⁡ x ) ( n ) (\sin{x})^{(n)} (sinx)(n)= sin ⁡ ( x + n ⋅ π 2 ) \sin(x+n\cdot{\frac{\pi}{2}}) sin(x+n2π)
n n n f ( n ) ( x ) f^{(n)}(x) f(n)(x) f n ( x ) f^{n}(x) fn(x)统一为 sin ⁡ ( x + n π 2 ) \sin(x+n\frac{\pi}{2}) sin(x+n2π)形式
1 cos ⁡ x \cos x cosx sin ⁡ ( x + π 2 ) \sin{(x+\frac{\pi}{2})} sin(x+2π)
2 − sin ⁡ x -\sin x sinx sin ⁡ ( x + 2 ⋅ π 2 ) \sin{(x+2\cdot\frac{\pi}{2})} sin(x+22π)
3 − cos ⁡ x -\cos x cosx sin ⁡ ( x + 3 ⋅ π 2 ) \sin(x+3\cdot\frac{\pi}{2}) sin(x+32π)
4 sin ⁡ x \sin x sinx sin ⁡ ( x + 4 ⋅ π 2 ) \sin(x+4\cdot\frac{\pi}{2}) sin(x+42π)
⋯ \cdots
n n n sin ⁡ ( x + n ⋅ π 2 ) \sin(x+n\cdot\frac{\pi}{2}) sin(x+n2π)
  • 从表格第2列可以看出,第4次求导的时候已经回到初始函数 f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx;
  • 但第2列的结果形式上不同一,不便表表示,而采用第3列结果
推广
  • sin ⁡ ( k x ) \sin(kx) sin(kx), sin ⁡ ( k x + b ) \sin(kx+b) sin(kx+b)的高阶导数
  • 方法1
    • 根据函数与一次函数复合导数公式以及 ( sin ⁡ x ) ( n ) (\sin{x})^{(n)} (sinx)(n)= sin ⁡ ( x + n ⋅ π 2 ) \sin(x+n\cdot{\frac{\pi}{2}}) sin(x+n2π)直接得到:
      • ( sin ⁡ a x ) ( n ) (\sin{ax})^{(n)} (sinax)(n)= a n sin ⁡ ( a x + n π 2 ) a^{n}\sin{(ax+n\frac{\pi}{2})} ansin(ax+n2π);
      • ( sin ⁡ a x + b ) ( n ) (\sin{ax+b})^{(n)} (sinax+b)(n)= a n sin ⁡ ( a x + b + n π 2 ) a^{n}\sin(ax+b+n\frac{\pi}{2}) ansin(ax+b+n2π)
  • 方法2
    • 利用公式 cos ⁡ ( ϕ ( x ) ) = sin ⁡ ( π 2 + ϕ ( x ) ) \cos(\phi(x))=\sin(\frac{\pi}{2}+\phi(x)) cos(ϕ(x))=sin(2π+ϕ(x)),
    • 反复套用 cos ⁡ ϕ ( x ) = sin ⁡ ( ϕ ( x ) + π 2 ) \cos\phi(x)=\sin(\phi(x)+\frac{\pi}{2}) cosϕ(x)=sin(ϕ(x)+2π)
    • 对于 ϕ ( x ) = a x , s i n ′ ( ϕ ( x ) ) 对于\phi(x)=ax,sin'(\phi(x)) 对于ϕ(x)=ax,sin(ϕ(x))= c o s ( ϕ ( x ) ) ϕ ′ ( x ) cos(\phi(x))\phi'(x) cos(ϕ(x))ϕ(x)= s i n ( ϕ ( x ) + π 2 ) ⋅ ϕ ′ ( x ) sin(\phi(x)+\frac{\pi}{2})\cdot\phi'(x) sin(ϕ(x)+2π)ϕ(x)
      • ( sin ⁡ a x ) ′ (\sin{ax})' (sinax)= sin ⁡ ( a x + π 2 ) ⋅ a \sin(ax+\frac{\pi}{2})\cdot a sin(ax+2π)a = a sin ⁡ ( a x + π 2 ) a\sin(ax+\frac{\pi}{2}) asin(ax+2π)(1)
      • ( sin ⁡ ( a x + b ) ) ′ (\sin{(ax+b)})' (sin(ax+b))= sin ⁡ ( ( a x + b ) + π 2 ) ⋅ a \sin((ax+b)+\frac{\pi}{2})\cdot a sin((ax+b)+2π)a = a sin ⁡ ( a x + b + π 2 ) a\sin(ax+b+\frac{\pi}{2}) asin(ax+b+2π)(1-1)
      • 式(1)两边求导: ( sin ⁡ a x ) ′ ′ (\sin{ax})'' (sinax)′′= a 2 sin ⁡ ( a x + 2 π 2 ) a^2\sin(ax+2\frac{\pi}{2}) a2sin(ax+22π)
      • 持续两边求导操作: ( sin ⁡ a x ) ( n ) (\sin{ax})^{(n)} (sinax)(n)= a n sin ⁡ ( a x + n π 2 ) a^{n}\sin{(ax+n\frac{\pi}{2})} ansin(ax+n2π)
    • 类似的, ( sin ⁡ a x + b ) ( n ) (\sin{ax+b})^{(n)} (sinax+b)(n)= a n sin ⁡ ( a x + b + n π 2 ) a^{n}\sin(ax+b+n\frac{\pi}{2}) ansin(ax+b+n2π)

余弦型函数

  • cos ⁡ x \cos{x} cosx的高阶导数时

    • ( cos ⁡ x ) ′ (\cos{x})' (cosx)= − sin ⁡ x -\sin{x} sinx= cos ⁡ ( x + π 2 ) \cos{(x+\frac{\pi}{2})} cos(x+2π)
  • 两边同时求导, ( cos ⁡ x ) ′ ′ (\cos{x})'' (cosx)′′= cos ⁡ ( ( x + π 2 ) + π 2 ) \cos{((x+\frac{\pi}{2})+\frac{\pi}{2})} cos((x+2π)+2π)= cos ⁡ ( x + 2 ⋅ π 2 ) \cos{(x+2\cdot\frac{\pi}{2})} cos(x+22π)

    • ⋯ \cdots
    • ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n ⋅ π 2 ) (\cos{x})^{(n)}=\cos(x+n\cdot{\frac{\pi}{2}}) (cosx)(n)=cos(x+n2π)
  • 类似的可以得到: ( cos ⁡ a x + b ) ( n ) (\cos{ax+b})^{(n)} (cosax+b)(n)= a n cos ⁡ ( a x + b + n π 2 ) a^{n}\cos(ax+b+n\frac{\pi}{2}) ancos(ax+b+n2π)

幂型👺

  • y = x k y=x^{{k}} y=xk, k {k} k任意常数 ( k ∈ R ) ({k}\in\mathbb{R}) (kR),求 y ( n ) y^{(n)} y(n);类似的求 y 1 = ( ( x + a ) k ) ( n ) y_1=((x+a)^k)^{(n)} y1=((x+a)k)(n)

    • n n n ( x k ) ( n ) (x^{{k}})^{(n)} (xk)(n) ( ( x + a ) k ) ( n ) ((x+a)^k)^{(n)} ((x+a)k)(n)
      1 k x k − 1 {k}{x}^{{k}-1} kxk1 k ( x + a ) k − 1 {k}{(x+a)}^{{k}-1} k(x+a)k1
      2 k ( k − 1 ) x k − 2 {k}({k}-1)x^{{k}-2} k(k1)xk2 k ( k − 1 ) ( x + a ) k − 2 {k}({k}-1)(x+a)^{{k}-2} k(k1)(x+a)k2
      3 k ( k − 1 ) ( k − 2 ) x k − 3 {k}({k}-1)({k}-2)x^{{k}-3} k(k1)(k2)xk3 k ( k − 1 ) ( k − 2 ) ( x + a ) k − 3 {k}({k}-1)({k}-2)(x+a)^{{k}-3} k(k1)(k2)(x+a)k3
      ⋮ \vdots ⋮ \vdots ⋮ \vdots
      n n n k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) x k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}x^{{k}-n} k(k1)(k2)(kn+1)xkn k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + a ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+a)^{{k}-n} k(k1)(k2)(kn+1)(x+a)kn
    • y 1 ( n ) y_1^{(n)} y1(n),即 ( ( x + a ) k ) ( n ) ((x+a)^k)^{(n)} ((x+a)k)(n)= k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + a ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+a)^{{k}-n} k(k1)(k2)(kn+1)(x+a)kn

      • k ∈ N + k\in\mathbb{N}_{+} kN+,有结论
        • k = n ∈ N + {k}=n\in\mathbb{N_{+}} k=nN+,则 ( ( x + a ) n ) ( n ) = n ! ((x+a)^{n})^{(n)}=n! ((x+a)n)(n)=n!;
        • k < n k<n k<n: ( ( x + a ) k ) ( n ) = 0 ((x+a)^{{k}})^{(n)}=0 ((x+a)k)(n)=0 ( ( x + a ) k ) ( k + n ) = 0 ((x+a)^{k})^{(k+n)}=0 ((x+a)k)(k+n)=0, ( n = 1 , 2 , ⋯   ) (n=1,2,\cdots) (n=1,2,)
      • k ∉ N k\notin{\mathbb{N}} k/N,则无此结论
        • 例如 y = ( x + 2 ) 2.1 y=(x+2)^{2.1} y=(x+2)2.1, y ′ = 2.1 ( x + 2 ) 1.1 y'=2.1(x+2)^{1.1} y=2.1(x+2)1.1; y ′ ′ = 2.1 × 1.1 × ( x + 2 ) 0.1 y''=2.1\times{1.1}\times{(x+2)}^{0.1} y′′=2.1×1.1×(x+2)0.1, y ( 3 ) y^{(3)} y(3)= 2.1 × 1.1 × 0.1 × ( x + 2 ) − 0.9 2.1\times{1.1}\times0.1\times{(x+2)}^{-0.9} 2.1×1.1×0.1×(x+2)0.9
    • 对于 y ( n ) y^{(n)} y(n)(即 y 1 ( n ) , a = 0 y_1^{(n)},a=0 y1(n),a=0):

      • k ∈ N + {k}\in{\mathbb{N}}_{+} kN+,且 k ⩾ n {k}\geqslant n kn, ( x k ) ( n ) (x^{{k}})^{(n)} (xk)(n)= [ ∏ i = 1 n ( k − i + 1 ) ] x k − n [\prod_{i=1}^{n}({k}-i+1)]x^{{k}-n} [i=1n(ki+1)]xkn= A k n x k − n A_{{k}}^{n}x^{{k}-n} Aknxkn= k ! ( k − n ) ! x k − n \frac{{k}!}{({k}-n)!}x^{{k}-n} (kn)!k!xkn
      • n = k ∈ N + n={k}\in\mathbb{N_{+}} n=kN+,则 ( x k ) ( k ) = k ! (x^{k})^{(k)}=k! (xk)(k)=k!;或 ( x n ) ( n ) = n ! (x^{n})^{(n)}=n! (xn)(n)=n!
      • k , n ∈ N + , k < n k,n\in\mathbb{N}_{+},{k}<n k,nN+,k<n: ( x k ) ( n ) = 0 (x^{{k}})^{(n)}=0 (xk)(n)=0 ( x k ) ( k + n ) = 0 (x^{k})^{(k+n)}=0 (xk)(k+n)=0, ( n = 1 , 2 , ⋯   ) (n=1,2,\cdots) (n=1,2,)
    • 对于 y 1 ( n ) , a = 1 y_1^{(n)},a=1 y1(n),a=1的时候,即 ( ( x + 1 ) k ) ( n ) ((x+1)^k)^{(n)} ((x+1)k)(n)= k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + 1 ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+1)^{{k}-n} k(k1)(k2)(kn+1)(x+1)kn

      • k = n ∈ N + {k}=n\in\mathbb{N_{+}} k=nN+,则 ( ( x + 1 ) n ) ( n ) = n ! ((x+1)^{n})^{(n)}=n! ((x+1)n)(n)=n!;
      • k , n ∈ N + , k k,n\in\mathbb{N}_{+},{k} k,nN+,k: ( ( x + 1 ) k ) ( n ) = 0 ((x+1)^{{k}})^{(n)}=0 ((x+1)k)(n)=0 ( ( x + 1 ) k ) ( k + n ) = 0 ((x+1)^{k})^{(k+n)}=0 ((x+1)k)(k+n)=0, ( n = 1 , 2 , ⋯   ) (n=1,2,\cdots) (n=1,2,)
  • ( 1 x ) ( n ) (\frac{1}{x})^{(n)} (x1)(n)= ( − 1 ) n n ! x − ( n + 1 ) (-1)^n n!x^{-(n+1)} (1)nn!x(n+1)

    • 1 x = x − 1 \frac{1}{x}=x^{-1} x1=x1

    • n n n导数
      1 − 1 x − 2 -1x^{-2} 1x2
      2 ( − 1 ) ( − 2 ) x − 3 (-1)(-2)x^{-3} (1)(2)x3
      3 ( − 1 ) ( − 2 ) ( − 3 ) x − 4 (-1)(-2)(-3)x^{-4} (1)(2)(3)x4
      n ( − 1 ) ( − 2 ) ( − 3 ) ⋯ ( − n ) x − ( n + 1 ) (-1)(-2)(-3)\cdots(-n)x^{-(n+1)} (1)(2)(3)(n)x(n+1)= ( − 1 ) n n ! x − ( n + 1 ) (-1)^n n!x^{-(n+1)} (1)nn!x(n+1)

P i 的 k 阶导数 P_i的k阶导数 Pik阶导数

  • P i ( x ) = a 0 + ∑ k = 1 n a k ( x − x 0 ) k P_i(x)=a_0+\sum\limits_{k=1}^{n} {a_k}(x-x_0)^{k} Pi(x)=a0+k=1nak(xx0)k

  • 对于i阶逼近函数P_i,对其求k阶导数;
    P i ( k ) ( x 0 ) = 0 + ∑ 0 + a k k ! + ∑ 0 = a k k ! P_i^{(k)}(x_0)=0+\sum\limits0+a_{k}k!+\sum\limits0=a_kk! Pi(k)(x0)=0+0+akk!+0=akk!

  • 根据约束条件 f ( k ) ( x 0 ) f^{(k)}{(x_0)} f(k)(x0)

  • 从而得到 a k = f ( k ) ( x 0 ) k ! a_k=\frac{f^{(k)}{(x_0)}}{k!} ak=k!f(k)(x0)

  • α = n 的时候 , f ( n ) ( x ) = α ! ( α − n ) ! = n ! \alpha=n的时候,f^{(n)}(x)=\frac{\alpha!}{(\alpha-n)!}=n! α=n的时候,f(n)(x)=(αn)!α!=n!

自然对数型

  • y = ln ⁡ ( 1 + x ) y=\ln(1+x) y=ln(1+x),求 y ( n ) y^{(n)} y(n)

    • 阶数 n n n ( ln ⁡ x ) ( n ) (\ln{x})^{(n)} (lnx)(n) ( ln ⁡ ( 1 + x ) ) ( n ) (\ln(1+x))^{(n)} (ln(1+x))(n)
      1 1 x \frac{1}{x} x1 1 1 + x \frac{1}{1+x} 1+x1
      2 − 1 x 2 -\frac{1}{x^2} x21 − 1 ( 1 + x ) 2 -\frac{1}{(1+x)^2} (1+x)21
      3 − ( − 1 x 4 ) 2 x -(-\frac{1}{x^{4}})2x (x41)2x= 1 × 2 x 3 \frac{1\times{2}}{x^3} x31×2 − ( − 1 ( 1 + x ) 4 ⋅ 2 ( 1 + x ) ⋅ 1 ) -(-\frac{1}{(1+x)^4}\cdot{2(1+x)}\cdot{1}) ((1+x)412(1+x)1)= 1 ⋅ 2 ( 1 + x ) 3 \frac{1\cdot{2}}{(1+x)^3} (1+x)312
      4 − 1 × 2 × 3 1 x 4 -1\times{2}\times{3}\frac{1}{x^{4}} 1×2×3x41 − 1 ⋅ 2 ⋅ 3 ( 1 + x ) 4 -\frac{1\cdot{2}\cdot{3}}{(1+x)^4} (1+x)4123
      ⋮ \vdots ⋮ \vdots ⋮ \vdots
      n n n ( 1 x ) ( n − 1 ) (\frac{1}{x})^{(n-1)} (x1)(n1)= ( − 1 ) n − 1 ( n − 1 ) ! x − n (-1)^{n-1} (n-1)!x^{-n} (1)n1(n1)!xn ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n (-1)^{n-1}\frac{(n-1)!}{(1+x)^{n}} (1)n1(1+x)n(n1)!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值