机械臂项目2 不同数据集和模型效果比较

本文对比了不同数据集和模型在机械臂项目中的表现。使用了ssdlite_mobilenet_v2_coco、faster_rcnn_inception_v2_coco以及ssd_mobilenet_v2_coco模型,通过调整模型参数和数据集大小,观察loss的变化。实验结果显示,数据集的扩充和模型的选择对性能有显著影响。
摘要由CSDN通过智能技术生成

数据集

原图:100
扩充后:600
训练集:480
测试集:120

模型

ssdlite_mobilenet_v2_coco_2018_05_09

I0729 11:57:47.076869 4638664128 learning.py:507] global step 209: loss = 3.6843 (2.739 sec/step)
I0729 11:57:49.732738 123145492389888 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 12:07:49.414452 4638664128 learning.py:507] global step 427: loss = 2.6105 (2.729 sec/step)
I0729 12:07:49.732372 123145492389888 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 12:27:39.913542 4638664128 learning.py:507] global step 857: loss = 2.2021 (2.720 sec/step)
I0729 12:27:42.616056 4638664128 learning.py:507] global step 858: loss = 2.6953 (2.702 sec/step)
I0729 12:27:45.337074 4638664128 learning.py:507] global step 859: loss = 2.1534 (2.720 sec/step)
I0729 12:27:48.036956 4638664128 learning.py:507] global step 860: loss = 2.3363 (2.699 sec/step)
I0729 12:27:49.732676 123145492389888 supervisor.py:1117] Saving checkpoint to path training/model.ckpt

1. model.ckpt-427

loss=2.6105
threshold=0.1

2. model.ckpt-860

loss=2.3363
threshold=0.1


数据集

原图:100
扩充后:1200
训练集:960
测试集:240

模型

上一步中model.ckpt-860

I0729 14:13:53.092765 4595254720 learning.py:507] global step 193: loss = 2.4848 (2.997 sec/step)
I0729 14:13:53.362606 123145565872128 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 14:23:51.449750 4595254720 learning.py:507] global step 390: loss = 2.6236 (2.975 sec/step)
I0729 14:23:53.363627 123145565872128 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值