数据集
原图:100
扩充后:600
训练集:480
测试集:120
模型
ssdlite_mobilenet_v2_coco_2018_05_09
I0729 11:57:47.076869 4638664128 learning.py:507] global step 209: loss = 3.6843 (2.739 sec/step)
I0729 11:57:49.732738 123145492389888 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 12:07:49.414452 4638664128 learning.py:507] global step 427: loss = 2.6105 (2.729 sec/step)
I0729 12:07:49.732372 123145492389888 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 12:27:39.913542 4638664128 learning.py:507] global step 857: loss = 2.2021 (2.720 sec/step)
I0729 12:27:42.616056 4638664128 learning.py:507] global step 858: loss = 2.6953 (2.702 sec/step)
I0729 12:27:45.337074 4638664128 learning.py:507] global step 859: loss = 2.1534 (2.720 sec/step)
I0729 12:27:48.036956 4638664128 learning.py:507] global step 860: loss = 2.3363 (2.699 sec/step)
I0729 12:27:49.732676 123145492389888 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
1. model.ckpt-427
loss=2.6105
threshold=0.1
2. model.ckpt-860
loss=2.3363
threshold=0.1
数据集
原图:100
扩充后:1200
训练集:960
测试集:240
模型
上一步中model.ckpt-860
I0729 14:13:53.092765 4595254720 learning.py:507] global step 193: loss = 2.4848 (2.997 sec/step)
I0729 14:13:53.362606 123145565872128 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 14:23:51.449750 4595254720 learning.py:507] global step 390: loss = 2.6236 (2.975 sec/step)
I0729 14:23:53.363627 123145565872128 supervisor.py:1117] Saving checkpoint to path training/model.ckpt
I0729 1