长上下文模型(扩展位置编码、调整上下文窗口、长文本数据、)

    在实际应用中,大语言模型对于长文本数据的处理需求日益凸显,尤其在长文档分析、多轮对话、故事创作等场景下。在这些情况下,模型需要处理的文本的长度常常超出预定义上下文窗口大小。例如,LLaMA-2 的上下文窗口限制为 4,096个词元。为了支持长文本处理,多家机构均已推出面向具有超长上下文窗口的大语言模型或 API。例如,OpenAI 发布了支持 128K 上下文窗口的 GPT-4 Turbo,而Anthropic 则推出了具有 200K 上下文窗口的 Claude-2.1。给定一个预训练后的大语言模型,如何有效拓展其上下文窗口以应对更长的文本数据成为当前学术界的研究焦点。目前,增强大语言模型长文本建模能力的研究主要集中在两个方向:一是扩展位置编码,二是调整上下文窗口。

扩展位置编码

    在基于 Transformer 架构的大语言模型中,模型的上下文建模能力通常受到训练集中文本数据长度分布的限制。一旦超出这个分布范围,模型的位置编码往往无法得到充分训练,从而导致模型处理长文本的性能下降。因此,当大语言模型面临超出其最大训练长度的任务时,需要对于位置编码进行扩展,以适应更长的绝对或相对位置。

    实际上,某些特定的位置编码在超出原始上下文窗口的文本上,也能够表现出较好的建模能力,这种能力通常被称为外推(Extrapolation)能力

### 增加大型语言模型上下文窗口长度 为了提升大型语言模型处理更长文本序列的能力,研究者们探索了多种方法来扩展上下文窗口长度。一种常见策略是采用分块机制,在这种机制下,输入被分割成多个较小的部分并分别编码[^1]。 另一种有效的方法涉及优化注意力机制的设计。传统自注意结构在处理极长序列时面临计算复杂度激增的问题。为此,稀疏注意力模式以及局部-全局混合型架构成为热门解决方案之一。这些改进使得模型能够在保持性能的同时支持更广泛的上下文范围。 此外,还有基于记忆增强技术的方式,通过引入外部存储组件或内部状态持久化方案,使模型具备跨越长时间跨度的信息保留能力。这种方法允许LLM记住先前见过的内容片段,并在其后的推理过程中加以利用,从而间接实现了更大规模的历史依赖建模。 ```python class ExtendedContextModel(nn.Module): def __init__(self, chunk_size=512, overlap=64): super().__init__() self.chunk_size = chunk_size self.overlap = overlap def forward(self, input_ids): chunks = [] for i in range(0, len(input_ids), self.chunk_size - self.overlap): chunk = input_ids[i:i+self.chunk_size] chunks.append(chunk) outputs = [] for chunk in chunks: output = model(chunk) # Assuming 'model' is defined elsewhere and can process individual chunks. outputs.append(output) final_output = combine_outputs(outputs) # Function to merge the results from each chunk into a single result. return final_output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月七꧁ ꧂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值