Always过程块语法

   Always过程块语法:
always 过程块是由 always 过程语句和语句块组成的,语法格式如下:
always @ ( 敏感事件 1 or  敏感事件 2 or  敏感事件 3…….)
语句块
     ★★  always 后面的语句块,如果只有一个类型的语句,可以不加 begin…end
例如: always@(posdege clk or negedge rstn) begin --------------- 只有一个语句,可以不要
          If(rstn)
                            Q=4’d0;
          Else q=q+1;
      End                                   --------------- 只有一个语句,可以不要
 
★★ always的敏感列表
     always 实现组合逻辑要将所有输入信号列入敏感列表
     always 实现时序逻辑不一定要将所有输入信号列入敏感列表
 
★★ always@(*)的用法
如果在设计中不愿列举过多的敏感信号,在综合工具和仿真工具的支持下,也可以使用 always@(*) ,此时综合或仿真工具会自动把 always 块中出现的敏感信号加入敏感信号列表
 
★★ always块内被赋值的信号
在always块内部的每一个信号都必须定义成寄存器型!!!!
注意:是等号”=”左边的变量,而不是右边的表达式,右边的表达式可以是任何类型
 
★★ always块外被赋值的信号
必须指定为wire类型
如果是 端口信号,那么默认的类型就是wire类型的,不需要另外指定。
 
★★ 同一个reg,多个always
对一个寄存器型(reg)和整型(integer)变量给定位的赋值只允许在一个always块内进行,如在另一always块也对其赋值,这是非法的。
### 医学领域中马尔科夫模型的应用 在医学领域,马尔科夫链作为一种有效的数学工具被用来模拟各种随机过程,在疾病进展、治疗反应以及健康状态变化方面提供了有价值的见解[^1]。 #### 马尔科夫链基础概念 马尔科夫链描述了一种特殊的随机过程,该过程中系统的未来状态只取决于当前的状态而与过去的历史无关。这种特性使得它非常适合处理那些具有时间序列特性的医疗数据集。 #### 应用实例:糖尿病患者病情发展预测 为了更好地理解这一理论的实际应用场景,考虑一个简单的例子——利用马尔科夫链来预测糖尿病患者的病情发展趋势: 假设存在三种可能的健康状况:“正常血糖水平”,“前期糖尿病” 和 “确诊糖尿病”。可以定义转移矩阵表示不同状态下转换的概率分布情况如下表所示: | 当前/下一阶段 | 正常血糖水平 | 前期糖尿病 | 确诊糖尿病 | | --- | --- | --- | --- | | **正常血糖水平** | 0.85 | 0.14 | 0.01 | | **前期糖尿病** | 0.20 | 0.79 | 0.01 | | **确诊糖尿病** | 0.00 | 0.00 | 1.00 | 上述表格展示了每一对相邻时间段内个体从一种状态转移到另一种状态的可能性大小。例如,“正常血糖水平”的人在下一个时期保持同样状态的概率为85%,转向前驱型糖尿病的风险约为14%等等。 #### Python 实现案例 下面是一个简单版本的Python程序片段,用于演示如何创建并操作这样一个基本的马尔科夫链模型来进行预测: ```python import numpy as np class MarkovChain(object): def __init__(self, transition_matrix, states): self.transition_matrix = np.atleast_2d(transition_matrix) self.states = states def next_state(self, current_state): return np.random.choice( self.states, p=self.transition_matrix[self.states.index(current_state)], ) def simulate_markov_chain(chain, start_state='Normal', steps=10): state_sequence = [start_state] for _ in range(steps - 1): next_s = chain.next_state(state_sequence[-1]) state_sequence.append(next_s) return state_sequence if __name__ == "__main__": # 定义状态列表和对应的转移概率矩阵 health_states = ['Normal', 'Pre-Diabetes', 'Diabetes'] trans_probabilities = [ [0.85, 0.14, 0.01], [0.20, 0.79, 0.01], [0.00, 0.00, 1.00] ] mc_model = MarkovChain(trans_probabilities, health_states) simulation_result = simulate_markov_chain(mc_model, start_state="Normal", steps=10) print(simulation_result) ``` 这段代码实现了对给定初始条件下连续多个周期内的健康状态演变路径进行了仿真,并打印出了最终的结果序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值