数据是一维数据,每一条数据对应一个标签,利用tensorflow深度学习框架写一个带自注意力机制的卷积神经网络,并进行预测训练,对测试集数据的标签进行预测

下面是一个使用TensorFlow深度学习框架构建的带有自注意力机制的卷积神经网络(Self-Attention Convolutional Neural Network)的示例代码。此示例用于训练和预测一维数据集的标签。

import tensorflow as tf

def scaled_dot_product_attention(Q, K, V):
    dk = tf.cast(tf.shape(K)[-1], tf.float32)
    dot_product = tf.matmul(Q, K, transpose_b=True)
    scaled_dot_product = dot_product / tf.math.sqrt(dk)
    attention_weights = tf.nn.softmax(scaled_dot_product, axis=-1)
    output = tf.matmul(attention_weights, V)
    return output

class SelfAttention(tf.keras.layers.Layer):
    def __init__(self, num_heads, dim):
        super(SelfAttention, self).__init__()
        self.num_heads = num_heads
        self.dim = dim
        
    def build(self, input_shape):
        self.query_weights = self.add_weight(
            shape=(self.dim, self.num_heads, self.dim // self.num_heads),
            initializer='random_normal',
            trainable=True)
        
        self.key_weights = self.add_weight(
            shape=(self.dim, self.num_heads, self.dim // self.num_heads),
            initializer='random_normal',
            trainable=True)
        
        self.value_weights = self.add_weight(
            shape=(self.dim, self.num_heads, self.dim // self.num_heads),
            initializer='random_normal',
            trainable=True)
        
    def call(self, inputs):
        Q = tf.matmul(inputs, self.query_weights)
        K = tf.matmul(inputs, self.key_weights)
        V = tf.matmul(inputs, self.value_weights)
        
        Q_split = tf.split(Q, self.num_heads, axis=2)
        K_split = tf.split(K, self.num_heads, axis=2)
        V_split = tf.split(V, self.num_heads, axis=2)
        
        attention_outputs = []
        for i in range(self.num_heads):
            attention_outputs.append(
                scaled_dot_product_attention(Q_split[i], K_split[i], V_split[i]))
            
        attention_outputs = tf.concat(attention_outputs, axis=2)
        attention_outputs = tf.reduce_sum(attention_outputs, axis=-1)
        return attention_outputs

def create_self_attention_cnn(num_classes):
    model = tf.keras.Sequential([
        tf.keras.layers.Conv1D(32, kernel_size=3, activation='relu', padding='same', input_shape=(None, 1)),
        tf.keras.layers.MaxPooling1D(pool_size=2),
        tf.keras.layers.Conv1D(64, kernel_size=3, activation='relu', padding='same'),
        tf.keras.layers.MaxPooling1D(pool_size=2),
        tf.keras.layers.Conv1D(128, kernel_size=3, activation='relu', padding='same'),
        tf.keras.layers.MaxPooling1D(pool_size=2),
        SelfAttention(num_heads=8, dim=128),
        tf.keras.layers.GlobalAveragePooling1D(),
        tf.keras.layers.Dense(num_classes, activation='softmax')
    ])
    return model

# 训练集和测试集的数据形状为 (样本数, 时间步长, 特征维度)
train_data = ...
train_labels = ...
test_data = ...

# 数据预处理和标准化
train_data = tf.keras.utils.normalize(train_data, axis=-1)
test_data = tf.keras.utils.normalize(test_data, axis=-1)

# 创建模型
num_classes = len(set(train_labels))
model = create_self_attention_cnn(num_classes)

# 编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 训练模型
model.fit(train_data, train_labels, epochs=10)

# 预测测试集数据
predictions = model.predict(test_data)

需要注意的是,此示例代码中的自注意力机制是通过SelfAttention类实现的。通过使用SelfAttention类,可以将自注意力机制应用于卷积神经网络中。

在训练和测试模型时,需要根据具体情况对数据进行预处理和标准化,以适应模型的输入要求。另外,根据数据集的标签类型,将num_classes设置为适当的值。

最后,可以使用训练好的模型对测试集数据的标签进行预测,并将预测结果保存在predictions变量中。

Transformer发轫于NLP(自然语言处理),并跨界应用到CV(计算机视觉)领域。目前已成为深度学习的新范式,影响力和应用前景巨大。 本课程对Transformer的原理和TensorFlow 2代码进行精讲,来帮助大家掌握其详细原理和具体实现。 原理精讲部分包括:注意力机制和自注意力机制、Transformer的架构概述、Encoder的多头注意力(Multi-Head Attention)、Encoder的位置编码(Positional Encoding)、残差链接(Residual Connection)、层规范化(Layer Normalization)、FFN(Feed Forward Network)、Transformer的训练及性能、Transformer的机器翻译工作流程。  代码精讲部分使用Jupyter Notebook对Transformer的TensorFlow 2实现代码进行逐行解读,包括:安装TensorFlow、Transformer的数据集加载与预处理代码解读、Transformer的位置编码与多头注意力代码解读、Transformer的Transformer类代码解读、Transformer的优化器与损失函数代码解读、Transformer的训练代码解读、Transformer的推理与权重保存代码解读。相关课程: 《Transformer原理与代码精讲(PyTorch)》https://edu.csdn.net/course/detail/36697《Transformer原理与代码精讲(TensorFlow)》https://edu.csdn.net/course/detail/36699《ViT(Vision Transformer)原理与代码精讲》https://edu.csdn.net/course/detail/36719《DETR原理与代码精讲》https://edu.csdn.net/course/detail/36768《Swin Transformer实战目标检测:训练自己的数据集》https://edu.csdn.net/course/detail/36585《Swin Transformer实战实例分割:训练自己的数据集》https://edu.csdn.net/course/detail/36586《Swin Transformer原理与代码精讲》 https://download.csdn.net/course/detail/37045
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值