Python深度学习基于Tensorflow(9)注意力机制

注意力机制的主要思想是将注意力集中在信息的重要部分,对重要部分投入更多的资源,以获取更多所关注目标的细节信息,抑制其他无用信息;

在注意力机制的背景下,我们将自主性提示称为查询(Query)。对于给定任何查询,注意力机制通过集中注意力(Attention Pooling)选择感官输入(Sensory Input),这些感官输入被称为值(Value)。每个值都与其对应的非自主提示的一个键(Key)成对。通过集中注意力,为给定的查询(自主性提示)与键(非自主性提示)进行交互,从而引导选择偏向值;

注意力机制计算过程如下:

![[Pasted image 20240512132525.png]]

注意力机制是怎么工作的

图中有四个东西,QueryKeyValueAttention,图中把KeyValue放在了一起是因为其产生的output是与KeyValue的维度是无关的,只与Query的维度有关;文中把KeyValue称作为Context sequenceQuery还是称作为Query sequence;为什么要这么做?可以看模型中右上方的Multi-Head Attention和左下角的Multi-Head Attention的区别进行分析;

QueryKeyValue这三个东西可以用python中的字典来解释,KeyValue表示字典中的键值对,而Query表示我们需要查询的键,QueryKeyValue匹配其得到的结果就是我们需要的信息;但是在这里并不要求QueryKey严格匹配,只需要模糊匹配就可以;Query对每一个Key进行一次模糊的匹配,并给出匹配程度,越适配权重就越大,然后根据权重再与每一个Value进行组合,得到最后的结果;其匹配程度的权重就代表了注意力机制的权重;

多头注意力机制就是把QueryKeyValue多个维度的向量分为几个少数维度的向量组合,再在Query_iKey_iValue_i上进行操作,最后把结果合并;

注意力机制的类型

Transformer模型中Multi-Head Attention有三个, 这三个分别对应三种Multi-Head Attention Layerthe cross attention layerthe global self attention layerthe causal self attention layer,从图中也可以发现每一层都有各自的不同,下面来一一介绍;

the cross attention layer:模型右上角(解码器)的Multi-Head Attention是注意力机制最直接的使用,其将编码器的信息和解码器的信息充分的结合了起来,文中把这一层叫做the cross attention layer;其context sequenceEncoder中得到的;

在这里要注意的是,每一次的查询是可以看得到所有的KeyValue的,但是查询与查询相互之间是看不到的,即独立的;

the global self attention layer:模型左下角(编码器)的Multi-Head Attention,这一层负责处理上下文序列,并沿着他的长度去传播信息即QueryQuery之间的信息;

Query与Query之间的信息传播有很多种方式,例如在Transformer没出来之间我们普遍采用Bidirectional RNNsCNNs的方式来处理;

但是为什么这里不使用RNN和CNN的方法呢?

RNNCNN的限制

  • RNN 允许信息沿着序列一路流动,但是它要经过许多处理步骤才能到达那里(限制梯度流动)。这些 RNN 步骤必须按顺序运行,因此 RNN 不太能够利用现代并行设备的优势。
  • 在 CNN 中,每个位置都可以并行处理,但它只提供有限的接收场。接收场只随着 CNN 层数的增加而线性增长,需要叠加许多卷积层来跨序列传输信息(小波网通过使用扩张卷积来减少这个问题)。

the global self attention layer允许每个序列元素直接访问每个其他序列元素,只需少量操作,并且所有输出都可以并行计算。 就像下图这样:

虽然图像类似于线性层,其本质好像也是线性层,但是其信息传播能力要比普通的线性层要强;

the causal self attention layer:因果自注意层,这一层与the global self attention layer类似,其不同的特点是需要maskMasked Multi-Head Attention;这里要注意的是Transformer是一个自回归模型,每次产生一个输出并且把输出当作输入用来继续产生输出,因此这些模型确保每个序列元素的输出仅依赖于先前的序列元素,所以需要对Attention weights进行处理;

根据论文公式: A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V
可以发现 Q Q Q K K K是做矩阵运算的, A t t e n t i o n Attention Attention中的单个元素计算是 Q Q Q中的某行和 K K K中的某行做点积运算;论文中是计算 A t t e n t i o n Attention Attention后在相应掩码位置乘一个无穷小,这里其实可以优化一下,只计算 A t t e n t i o n Attention Attention有效的位置,可以加快速度;

这一层根据训练和推理有一点不同,如上文所说,在训练时,我们不需要每一次新产生的输出做为输入,我们直接用真值(shift)代替新产生的输出进行训练就好,这样可以在缺失一点稳定性的情况下,加快训练速度,并得到每一个位置上的损失大小;

在推理时,我们并没有真值,我们只能以每一次新产生的输出作为输入进行计算,这里有两种自回归的处理方式;一个是RNN,一个是CNN:Fast Wavenet

以下是该层的简要表示,即每个序列元素的输出仅依赖于先前的序列元素;

构建Transformer模型

模型结构如下:

Embedding层

Embedding层分为两个部分:input_embeddingposition_embedding

首先是input_embedding,假设 “注意力机制是Transformer的核心” 这句话分词得到 [注意力机制, 是, Transformer, 的, 核心];用序号表示为[1,2,3,4,5],由于是分类变量,需要转化为独热编码再使用权重矩阵映射到某一维度,然而这里可以直接用tf.kears.layers.Embedding一步实现上述两步功能;其需要一个input_dim:表示分类个数,也就是序号的最大值;output_dim:表示隐藏层维度,也就是d_model

其次是position_embedding,论文中采用的是绝对位置编码的方式:

![[Pasted image 20240512143453.png]]

其需要两个参数,一个是pos,这是表示位置,也就是 输入序列的长度 范围内的值,第二个是i,这表示嵌入向量的位置,也就是d_model 隐藏维度范围内的值;实现代码如下:

def absolute_position_embedding(n_len, d_model):
    positions = tf.range(n_len, dtype=tf.float32)[:,tf.newaxis]
    depths = tf.range(d_model//2, dtype=tf.float32)[tf.newaxis, :]/(d_model//2)
    angle_rads = positions / (10000**depths)
    pos_embedding = tf.concat([tf.sin(angle_rads), tf.cos(angle_rads)], axis=-1)
    return pos_embedding

如果需要画图,使用下面代码:

position_input = absolute_position_embedding(n_len=2048, d_model=512)
plt.pcolormesh(position_input.numpy().T, cmap='RdBu')
plt.ylabel('Depth')
plt.xlabel('Position')
plt.colorbar()
plt.show()

结合起来获得Embeding,使用 tf.keras.layers.Layer 类表达如下:

class Embedding(tf.keras.layers.Layer):
    def __init__(self, n_len, input_dim, d_model):
        super(Embedding, self).__init__()
        self.input_embedding = tf.keras.layers.Embedding(input_dim=input_dim, output_dim=d_model, mask_zero=True)
        self.position_embedding = self.absolute_position_embedding(n_len=n_len, d_model=d_model)
        
    # 自动添加mask
    def compute_mask(self, *args, **kwargs):
        return self.input_embedding.compute_mask(*args, **kwargs)
        
    def absolute_position_embedding(self, n_len, d_model):
        positions = tf.range(n_len, dtype=tf.float32)[:,tf.newaxis]
        depths = tf.range(d_model//2, dtype=tf.float32)[tf.newaxis, :]/(d_model//2)
        angle_rads = positions / (10000**depths)
        pos_embedding = tf.concat([tf.sin(angle_rads), tf.cos(angle_rads)], axis=-1)
        return pos_embedding

    def call(self, x):
        length = tf.shape(x)[1]
        x = tf.cast(x, tf.float32)
        x = self.input_embedding(x)
        output = x + self.position_embedding[tf.newaxis, :length]
        return output
注意力机制的实现

由于要适应三种注意力机制,我们需要分离 maskqkv功能,在这里要注意,不能使用tensor.shape,而要使用tf.shape(tensor)

class MultiHeadAttention(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()

        self.num_heads = num_heads
        self.d_model = d_model
        self.wq = tf.keras.layers.Dense(d_model)
        self.wk = tf.keras.layers.Dense(d_model)
        self.wv = tf.keras.layers.Dense(d_model)

        self.wo = tf.keras.layers.Dense(d_model)

    def split_head(self, x):
        """(batch_size, heads, len, depth)"""
        output = tf.reshape(x, [tf.shape(x)[0], tf.shape(x)[1], self.num_heads, -1])
        output = tf.transpose(output, [0,2,1,3])
        return output

    def scaled_dot_product_attention(self, q, k, v, use_casual_mask):
        dk = tf.cast(tf.shape(k)[-1], tf.float32)
        matmul_qk = tf.matmul(q, k, transpose_b=True) / tf.math.sqrt(dk)

        if use_casual_mask:
            casual_mask = 1 - tf.linalg.band_part(tf.ones_like(matmul_qk), -1, 0)
            matmul_qk += casual_mask * -1e9
    
        attention_weighs = tf.nn.softmax(matmul_qk, axis=-1)
        outputs = tf.matmul(attention_weighs, v)
        return attention_weighs, outputs
        
    def call(self, q, k, v,  return_attention_weights=False, use_casual_mask=False):
        q = self.split_head(self.wq(q))
        k = self.split_head(self.wk(k))
        v = self.split_head(self.wv(v))
        attention_weighs, output = self.scaled_dot_product_attention(q, k, v, use_casual_mask=use_casual_mask)
        output = tf.transpose(output, [0,2,1,3])
        output = tf.reshape(output, [tf.shape(output)[0], tf.shape(output)[1], self.d_model])
        output = self.wo(output)
        if return_attention_weights:
            return attention_weighs, output
        else:
            return output
Encoder实现

由于 Encoder 有六个相同的子块 EncoderLayer,这里先实现一下 EncoderLayer

EncoderLayer 中 包含一个自注意力机制以及一个前反馈层,所以需要三个参数初始化:d_modelnum_headsdff

这里 dff 表示前反馈层中的投影维度;

class EncoderLayer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff):
        super(EncoderLayer, self).__init__()
        self.mha = MultiHeadAttention(d_model, num_heads)
        self.fnn_in = tf.keras.layers.Dense(dff, activation='relu')
        self.fnn_out = tf.keras.layers.Dense(d_model)
        self.layernorm1 = tf.keras.layers.LayerNormalization()
        self.layernorm2 = tf.keras.layers.LayerNormalization()

    def call(self, x):
        x1 = self.mha(q=x, k=x, v=x)
        x1 = self.layernorm1(x + x1)
        x2 = self.fnn_in(x1)
        x2 = self.fnn_out(x2)
        output = self.layernorm2(x1 + x2)
        return output

Encoder 从本质来说就是 EncoderLayer 的累加:

class Encoder(tf.keras.layers.Layer):
    def __init__(self, num_encoder_layer, d_model, num_heads, dff):
        super(Encoder, self).__init__()
        self.encoder_layers = [EncoderLayer(d_model, num_heads, dff) for _ in range(num_encoder_layer)]

    def call(self, x):
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
        return x
Decoder实现

同样按照Encoder中一样实现,但是不同的是:首先多了一个 Mask MutliHead Attention,其次第二个MHA中 kv 是来自于Encoder

class Decoder_layer(tf.keras.layers.Layer):
    def __init__(self, d_model, num_heads, dff):
        super(Decoder_layer, self).__init__()
        self.mha1 = MultiHeadAttention(d_model, num_heads)
        self.mha2 = MultiHeadAttention(d_model, num_heads)

        self.fnn_in = tf.keras.layers.Dense(dff, activation='relu')
        self.fnn_out = tf.keras.layers.Dense(d_model)
        
        self.layernorm1 = tf.keras.layers.LayerNormalization()
        self.layernorm2 = tf.keras.layers.LayerNormalization()
        self.layernorm3 = tf.keras.layers.LayerNormalization()

    def call(self, x, enc_output):
        x1 = self.mha1(q=x, k=x, v=x, use_casual_mask=True)
        x1 = self.layernorm1(x + x1)
        x2 = self.mha2(q=x1, k=enc_output, v=enc_output)
        x2 = self.layernorm2(x1 + x2)
        x3 = self.fnn_in(x2)
        x3 = self.fnn_out(x3)
        output = self.layernorm3(x2 + x3)
        return output

循环 DecoderLayer 得到 Decoder

class Decoder(tf.keras.layers.Layer):
    def __init__(self, num_decoder_layer, d_model, num_heads, dff):
        super(Decoder, self).__init__()
        self.decoder_layers = [Decoder_layer(d_model, num_heads, dff) for _ in range(num_decoder_layer)]

    def call(self, x, enc_output):
        for decoder_layer in self.decoder_layers:
            x = decoder_layer(x, enc_output)
        return x
Transformer实现

结合一下前面实现的东西,很轻松可以得到:

class Transformer(tf.keras.Model):
    def __init__(self, num_encoder_layer, num_decoder_layer, input_dim_1, input_dim_2, n_len, d_model, num_heads, dff):
        super(Transformer, self).__init__()
        self.embedding_1 = Embedding(n_len, input_dim_1, d_model)
        self.embedding_2 = Embedding(n_len, input_dim_2, d_model)
        self.encoder = Encoder(num_encoder_layer, d_model, num_heads, dff)
        self.decoder = Decoder(num_decoder_layer, d_model, num_heads, dff)
        self.final_dense = tf.keras.layers.Dense(input_dim_2, activation='softmax')

    def call(self, x):
        x1, x2 = x[0], x[1]
        x1 = self.embedding_1(x1)
        x2 = self.embedding_2(x2)
        x1 = self.encoder(x1)
        x2 = self.decoder(x2, x1)
        output = self.final_dense(x2)
        return output
导入数据并分词

这里使用的数据是粤语转普通话翻译,数据可以在我的博客资源中下载;

import tensorflow as tf
import pandas as pd
import numpy as np
import jieba
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.processors import TemplateProcessing

def get_tokenizer(max_length, data):
    tokenizer = Tokenizer(BPE(unk_token='[UNK]'))
    trainer = BpeTrainer(special_tokens=["[PAD]", "[UNK]", "[START]", "[END]"])
    tokenizer.pre_tokenizer = Whitespace()
    tokenizer.post_processor = TemplateProcessing(
        single="[START] $0 [END]",
        special_tokens=[("[START]", 2), ("[END]", 3)],
    )
    tokenizer.enable_truncation(max_length=max_length)
    tokenizer.enable_padding(length=max_length, pad_id=0)
    tokenizer.train_from_iterator(data, trainer=trainer)
    return tokenizer


data = pd.read_csv('yue-zh.csv').dropna()
data.head()

这里结合 tokenizers 进行分词处理,采用jieba先分词,然后使用BPE算法获取此表;

yue_tokenizer = get_tokenizer(32, data['yue'].astype('string').map(lambda x: list(jieba.cut(x))))
zh_tokenizer = get_tokenizer(32, data['zh'].astype('string').map(lambda x: list(jieba.cut(x))))

yue_tokenizer.get_vocab_size(), zh_tokenizer.get_vocab_size()
(30000, 30000)

data['zh'] = data['zh'].map(lambda x: zh_tokenizer.encode(x).ids)
data['yue'] = data['yue'].map(lambda x: yue_tokenizer.encode(x).ids)

data = tf.data.Dataset.from_tensor_slices(data.values.tolist())
@tf.function
def process_data(x):
    x1, x2 = x[0], x[1]
    return (x1, x2[:-1]), x2[1:]


data = data.map(process_data).batch(32, drop_remainder=True)

train_data = data.take(1000)
初始化模型
model = Transformer(1,1,zh_tokenizer.get_vocab_size(), yue_tokenizer.get_vocab_size(), 32, 256, 8, 512)

model.compile(
    loss=tf.keras.losses.sparse_categorical_crossentropy,
    optimizer='adam',
    metrics=['accuracy']
)

history = model.fit(train_data, epochs=10)

得到训练结果:

Epoch 1/10
755/755 [==============================] - 19s 23ms/step - loss: 2.2625 - accuracy: 0.7145
Epoch 2/10
755/755 [==============================] - 17s 23ms/step - loss: 1.7673 - accuracy: 0.7420
Epoch 3/10
755/755 [==============================] - 17s 23ms/step - loss: 1.5616 - accuracy: 0.7603
Epoch 4/10
755/755 [==============================] - 17s 23ms/step - loss: 1.4048 - accuracy: 0.7720
Epoch 5/10
755/755 [==============================] - 17s 23ms/step - loss: 1.2557 - accuracy: 0.7856
Epoch 6/10
755/755 [==============================] - 17s 23ms/step - loss: 1.1231 - accuracy: 0.7986
Epoch 7/10
755/755 [==============================] - 17s 22ms/step - loss: 1.0160 - accuracy: 0.8115
Epoch 8/10
755/755 [==============================] - 17s 23ms/step - loss: 0.9229 - accuracy: 0.8246
Epoch 9/10
755/755 [==============================] - 17s 23ms/step - loss: 0.8327 - accuracy: 0.8379
Epoch 10/10
755/755 [==============================] - 17s 23ms/step - loss: 0.7516 - accuracy: 0.8504
推理

好像推理这里有一点问题,词表维度太高导致学习不好,这里只有一个不好的输出结果;

MAX_TOKENS = 32

class Translator(tf.Module):
    def __init__(self, tokenizers, transformer):
        self.tokenizers = tokenizers
        self.transformer = transformer
    
    def __call__(self, sentence, max_length=MAX_TOKENS):
        sentence = self.tokenizers.encode(sentence).ids
        sentence = tf.constant(sentence)[tf.newaxis, :]
        
        encoder_input = sentence
        
        start = tf.constant(2, dtype='int64')[tf.newaxis]
        end = tf.constant(3, dtype='int64')[tf.newaxis]
        
        # tf.TensorArray 类似于python中的列表
        output_array = tf.TensorArray(dtype=tf.int64, size=0, dynamic_size=True)
        # 在index=0的位置写入start
        output_array = output_array.write(0, start)
        
        for i in tf.range(max_length):
            output = tf.transpose(output_array.stack())
            predictions = self.transformer([encoder_input, output], training=False) # Shape `(batch_size, seq_len, vocab_size)`
            
            # 从seq_len中的最后一个维度选择last token
            predictions = predictions[:, -1:, :]  # Shape `(batch_size, 1, vocab_size)`.

            predicted_id = tf.argmax(predictions, axis=-1)
            
            # `predicted_id`加入到output_array中作为一个新的输入
            output_array = output_array.write(i+1, predicted_id[0])

            # 如果输出end就表明停止
            if predicted_id == end:
                break

        output = tf.transpose(output_array.stack())
        return zh_tokenizer.decode(output.numpy().tolist()[0])

测试:

translator = Translator(yue_tokenizer, model)
translator('嗰次喺跑馬地協和里見到有雞蛋仔格仔餅賣')

# '那次 在 跑马地 协 和里 看到 这些 友 的 地方 。'
  • 34
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值