1331:【例1-2】后缀表达式的值
【题目描述】
从键盘读入一个后缀表达式(字符串),只含有0-9组成的运算数及加(+)、减(—)、乘(*)、除(/)四种运算符。每个运算数之间用一个空格隔开,不需要判断给你的表达式是否合法。以@作为结束标志。
比如,16–9*(4+3)转换成后缀表达式为:16□9□4□3□+*–,在字符数组A中的形式为:
栈中的变化情况:
运行结果:-47
提示:输入字符串长度小于250,参与运算的整数及结果之绝对值均在范围内,如有除法保证能整除。
【题目分析】
读入一个字符c
如果为数字,进行数字的记录,num=num*10+c-'0'
如果为空格,将记录的数字入栈 sta.push(num),num=0;
如果为加号,从栈中取出两个数进行加运算,再放入栈
如果为减号,从栈中取出两个数进行减运算,再放入栈
如果为乘号,从栈中取出两个数进行乘运算,再放入栈
如果为除号,从栈中取出两个数进行除运算,再放入栈
最后结果为栈顶数
【代码实现】
#include <bits/stdc++.h>
using namespace std;
stack<long long> st;
int main() {
//input data
char c;
long long num = 0;
while (scanf("%c", &c), c != '@') {
if (c >= '0' && c <= '9') {
num = num * 10 + c - '0';
}
if (c == '+') {
long long x = st.top();
st.pop();
long long y = st.top();
st.pop();
st.push(y + x);
}
if (c == '-') {
long long x = st.top();
st.pop();
long long y = st.top();
st.pop();
st.push(y - x);
}
if (c == '*') {
long long x = st.top();
st.pop();
long long y = st.top();
st.pop();
st.push(y * x);
}
if (c == '/') {
long long x = st.top();
st.pop();
long long y = st.top();
st.pop();
st.push(y / x);
}
if (c == ' ') {
st.push(num);
num = 0;
}
}
cout << st.top();
return 0;
}
1353:表达式括号匹配(stack)
【题目描述】
假设一个表达式有英文字母(小写)、运算符(+,—,∗,/+,—,∗,/)和左右小(圆)括号构成,以“@@”作为表达式的结束符。请编写一个程序检查表达式中的左右圆括号是否匹配,若匹配,则返回“YES”;否则返回“NO”。表达式长度小于255,左圆括号少于2020个。
【题目分析】
定义一个字符栈sta,循环读入一个字符c
如果是左括号,直接入栈
如果是右括号,判断栈是否为空,不为空弹出一个元素,如果为空,压入当前括号,退出循环
最后判断栈是否为空,如果为空 输出“YES” 否则输出“NO”
【代码实现】
#include <bits/stdc++.h>
using namespace std;
stack<char> st;
//当栈为空时,不能访问st.top()
int main() {
//input data
char c;
while (scanf("%c", &c), c != '@') {
if (c == '(') {
st.push('(');
}
if (c == ')') {
if (st.empty()) {
st.push(c);
break;
} else
st.pop();
}
}
if (st.empty()) cout << "YES";
else cout << "NO";
return 0;
}
1354:括弧匹配检验
【题目描述】
假设表达式中允许包含两种括号:圆括号和方括号,其嵌套的顺序随意,如([ ]())
或[([ ][ ])]
等为正确的匹配,[( ])
或([ ]( )
或 ( ( ) ) )
均为错误的匹配。
现在的问题是,要求检验一个给定表达式中的括弧是否正确匹配?
输入一个只包含圆括号和方括号的字符串,判断字符串中的括号是否匹配,匹配就输出 “OK
” ,不匹配就输出“Wrong
”。输入一个字符串:[([][])]
,输出:OK
。
【题目分析】
定义一个字符栈,循环读入一个字符c
如果为“[”或者"(",直接入栈,
如果为“]”判断栈不为空且栈顶元素为"]" 弹出一个元素 否则 压入c,退出循环
如果为“)”判断栈不为空且栈顶元素为"(" 弹出一个元素 否则 压入c,退出循环
最后判断栈为空,输出“YES” 否则输出“NO”
【代码实现】
#include <bits/stdc++.h>
using namespace std;
stack<char> st;
int main() {
//input data
char c;
while (scanf("%c", &c), c != '\n') {
if (c == '(' || c == '[') st.push(c);
if (c == ')') {
if (!st.empty() && st.top() == '(') st.pop();
else {
st.push(c);
break;
}
}
if (c == ']') {
if (!st.empty() && st.top() == '[') st.pop();
else {
st.push(c);
break;
}
}
}
if (st.empty()) cout << "OK";
else cout << "Wrong";
return 0;
}
1355:字符串匹配问题(strs)
【题目描述】
字符串中只含有括号 (),[],<>,{}
,判断输入的字符串中括号是否匹配。如果括号有互相包含的形式,从内到外必须是<>,(),[],{}
,例如。输入: [()]
输出:YES
,而输入([]),([)]
都应该输出NO
。
【题目分析】
特别的:如果括号有互相包含的形式,从内到外必须是<>,(),[],{} 中间可以省略一种括号,例如。输入: [()] 输出:YES,而输入([]),([)]都应该输出NO
对括号进行编号:1 <>,2 (),3 [], 4 {}
循环读入每个字符c,对每个字符进行匹配:
如果字符为“<” 直接压入栈,如果字符为“>”而且栈首元素为1,将队首弹栈,否则设置退出循环标志
如果字符为“>” 且栈首元素为1,将队首弹栈,否则设置循环退出标记
如果字符为“(” 判断队首元素是否>=2(满足括号顺序)或者栈为空,2进栈,否则设置循环退出标记
如果字符为“)”且栈首元素为2,将队首弹栈,否则设置循环退出标记
如果字符为“[” 判断队首元素是否>=3(满足括号顺序)或者栈为空,3进栈,否则设置循环退出标记
如果字符为“]” 且栈首元素为3,将队首弹栈,否则设置循环退出标记
如果字符为“{” 判断队首元素是否==4(满足括号顺序)或者栈为空,4进栈,否则设置循环退出标记
如果字符为“}” 且栈首元素为4,将队首弹栈,否则设置循环退出标记
根据循环退出标记判断是否退出循环
循环外进行栈为空且退出标记不为-1,输出YES,否则输出NO
【代码实现】
#include <bits/stdc++.h>
using namespace std;
stack<char> st;
vector<char> back;
bool isdig(char c) {
if (c >= '0' && c <= '9') return true;
else return false;
}
int main() {
//input data
char c;
//将中缀表达方式转化为后缀表达式 back
while (scanf("%c", &c), c != '\n') {
if (isdig(c)) back.push_back(c);
else {
if (isdig(back.back())) back.push_back('@');
if (st.empty()) st.push(c);
else { //判断一下优先级
if (c == '(') st.push(c);
if (c == ')') {
while (st.top() != '(') {
back.push_back(st.top());
st.pop();
}
st.pop();
}
if (c == '+' || c == '-') {
while (st.top() != '(' ) {
back.push_back(st.top());
st.pop();
if (st.empty()) break;
}
st.push(c);
}
if (c == '*' || c == '/' || c == '^') {
while (st.top() == '^' || st.top() == '*' || st.top() == '/') {
back.push_back(st.top());
st.pop();
if (st.empty()) break;
}
st.push(c);
}
}
}
}
if (isdig(back.back())) back.push_back('@');
while (!st.empty()) {
back.push_back(st.top());
st.pop();
}
for (int i = 0; i < (int)back.size(); i++) {
cout << back[i];
}
cout << endl;
//计算后缀表示式的数值
stack<long long> stt;
long long num = 0;
for (int i = 0; i < (int)back.size(); i++) {
if (back[i] >= '0' && back[i] <= '9') {
num = num * 10 + back[i] - '0';
}
if (back[i] == '@') {
stt.push(num);
num = 0;
}
if (back[i] == '+') {
long long x = stt.top();
stt.pop();
long long y = stt.top();
stt.pop();
stt.push(y + x);
}
if (back[i] == '-') {
long long x = stt.top();
stt.pop();
long long y = stt.top();
stt.pop();
stt.push(y - x);
}
if (back[i] == '*') {
long long x = stt.top();
stt.pop();
long long y = stt.top();
stt.pop();
stt.push(y * x);
}
if (back[i] == '/') {
long long x = stt.top();
stt.pop();
long long y = stt.top();
stt.pop();
stt.push(y / x);
}
if (back[i] == '^') {
long long x = stt.top();
stt.pop();
long long y = stt.top();
stt.pop();
stt.push((long long)pow(y, x));
}
}
//clock_t s = clock();
cout << stt.top();
//cout <<endl<< clock() - s<<endl;
return 0;
}
1356:计算(calc)
【题目描述】
小明在你的帮助下,破密了Ferrari设的密码门,正要往前走,突然又出现了一个密码门,门上有一个算式,其中只有“(”,“)”,“0-9”,“+”,“-”,“*”,“/”,“^”,求出的值就是密码。小明数学学得不好,还需你帮他的忙。(“/”用整数除法)
【题目分析】
使用栈将中缀转化为后缀
1.设定运算符栈;
2.从左到右遍历中缀表达式的每个数字和运算符;
3.若当前字符是数字,则直接输出成为后缀表达式的一部分;
4.若当前字符为运算符,则判断其与栈顶运算符的优先级,若优先级大于栈顶运算符,则进栈;若优先级小于等于栈顶运算符,退出栈顶运算符成为后缀表达式的一部分,然后将当前运算符放入栈中;
5.若当前字符为“(”,进栈;
6.若当前字符为“)”,则从栈顶起,依次将栈中运算符出栈成为后缀表达式的一部分,直到碰到“(”。将栈中“(”出栈,不需要成为后缀表达式的一部分,然后继续扫描表达式直到最终输出后缀表达式为止。
使用栈算后缀表达式的值
当前是数字,数字累加,当前不是数字 将记录的数字入栈
当前是运算符,从栈中取出两个数进行运算符的计算
循环结束,在栈首的元素即为后缀表达式的值
两者可以同时进行 特别的:数字可能为0,数字可能是多位数,^ * / 三者的优先级相同
【代码实现】
#include <bits/stdc++.h>
using namespace std;
char a[255];
stack<int> st_int;
void calc(char c) {
int x = st_int.top();
st_int.pop();
int y = st_int.top();
st_int.pop();
switch (c) {
case '+':
x = x + y;
break;
case '-':
x = y - x;
break;
case '*':
x = x * y;
break;
case '/':
x = y / x;
break;
case '^':
x = pow(y, x);
break;
}
st_int.push(x);
}
int main() {
//input data
cin.getline(a, 255);
int n = strlen(a);
stack<char> st_ch;
int num = 0;
bool flag = 0;
for (int i = 0; i < n; i++) {
if (isalnum(a[i])) {
num = num * 10 + a[i] - '0';
flag = 0;
} else {
if (flag == 0) {
st_int.push(num);
num = 0;
flag = 1;
}
switch (a[i]) {
case '+':
while (!st_ch.empty() && st_ch.top() != '(') {
calc(st_ch.top());
st_ch.pop();
}
st_ch.push(a[i]);
break;
case '-':
while (!st_ch.empty() && st_ch.top() != '(') {
calc(st_ch.top());
st_ch.pop();
}
st_ch.push(a[i]);
break;
case '*':
while (!st_ch.empty() && st_ch.top() != '(' && st_ch.top() != '+' && st_ch.top() != '-') {
calc(st_ch.top());
st_ch.pop();
}
st_ch.push(a[i]);
break;
case '/':
while (!st_ch.empty() && st_ch.top() != '(' && st_ch.top() != '+' && st_ch.top() != '-') {
calc(st_ch.top());
st_ch.pop();
}
st_ch.push(a[i]);
break;
case '^':
while (!st_ch.empty() && st_ch.top() != '(' && st_ch.top() != '+' && st_ch.top() != '-') {
calc(st_ch.top());
st_ch.pop();
}
st_ch.push(a[i]);
break;
case '(':
st_ch.push(a[i]);
break;
case ')':
while (st_ch.top() != '(') {
calc(st_ch.top());
st_ch.pop();
}
st_ch.pop();
break;
}
}
}
if (flag == 0) {
st_int.push(num);
num = 0;
}
while (!st_ch.empty()) {
calc(st_ch.top());
st_ch.pop();
}
cout << st_int.top();
return 0;
}
1357:车厢调度(train)
【题目描述】
有一个火车站,铁路如图所示,每辆火车从A驶入,再从B方向驶出,同时它的车厢可以重新组合。假设从A方向驶来的火车有n节(n≤1000),分别按照顺序编号为1,2,3,…,n�。假定在进入车站前,每节车厢之间都不是连着的,并且它们可以自行移动到B处的铁轨上。另外假定车站C可以停放任意多节车厢。但是一旦进入车站C,它就不能再回到A方向的铁轨上了,并且一旦当它进入B方向的铁轨,它就
不能再回到车站C。
负责车厢调度的工作人员需要知道能否使它以a1,a2,…,an的顺序从B方向驶出,请来判断能否得到指定的车厢顺序。
【题目分析】
内层循环:(栈为空 or 栈顶不和需要的元素匹配)and 外面还有元素,就将外面的元素入栈
内层循环:(栈不为空 and 栈顶元素与需要的元素匹配),出栈
外层 循环上述过程,外面没有元素 退出循环
栈不为空,输出NO,否则 输出YES
【代码实现】
#include <bits/stdc++.h>
using namespace std;
int n, cnt = 1;
int a[1005];
stack<int> sta;
int main() {
//input data
cin >> n;
for (int i = 1; i <= n; i++) {
scanf("%d", a + i);
}
int i = 1;
while (cnt <= n) {
while ((sta.empty() || sta.top() != a[i]) && cnt <= n) sta.push(cnt++);
while (!sta.empty() && sta.top() == a[i]) sta.pop(), i++;
}
if (sta.empty()) cout << "YES";
else cout << "NO";
return 0;
}
1358:中缀表达式值(expr)
【题目描述】
输入一个中缀表达式(由0-9组成的运算数、加+减-乘*除/四种运算符、左右小括号组成。注意“-”也可作为负数的标志,表达式以“@”作为结束符),判断表达式是否合法,如果不合法,请输出“NO”;否则请把表达式转换成后缀形式,再求出后缀表达式的值并输出。
注意:必须用栈操作,不能直接输出表达式的值。
【题目分析】
合法与不合法的说明
1、负号只可能出现在最前面或者左括号的右边
2、先进行括号匹配 进行不合法的输出
3、运算符与数字的数量 存在1的差值,否则不合法
使用栈将中缀转化为后缀
1.设定运算符栈;
2.从左到右遍历中缀表达式的每个数字和运算符;
3.若当前字符是数字,则直接输出成为后缀表达式的一部分;
4.若当前字符为运算符,则判断其与栈顶运算符的优先级,若优先级大于栈顶运算符,则进栈;若优先级小于等于栈顶运算符,退出栈顶运算符成为后缀表达式的一部分,然后将当前运算符放入栈中;
5.若当前字符为“(”,进栈;
6.若当前字符为“)”,则从栈顶起,依次将栈中运算符出栈成为后缀表达式的一部分,直到碰到“(”。将栈中“(”出栈,不需要成为后缀表达式的一部分,然后继续扫描表达式直到最终输出后缀表达式为止。
使用栈算后缀表达式的值
当前是数字,数字累加,当前不是数字 将记录的数字入栈
当前是运算符,从栈中取出两个数进行运算符的计算
循环结束,在栈首的元素即为后缀表达式的值
入栈条件判断:只有栈顶元素为加减,加入的元素为乘除时才返回true,否则返回false 可写成函数
【代码实现】
#include<bits/stdc++.h>
using namespace std;
/*运算符的优先级判断*/
bool judge(char a, char b) {
return (a == '*' || a == '/' || a == '^') && (b == '+' || b == '-') ? true : false;
}
bool tf(char a[], char b[]) { //将a数组转化为b数组,既将中缀表达式转化为后缀表达式
int len = strlen(a);
char oper[255];
memset(oper, 0, sizeof(oper));
int top = 0, cnt = 0, i = 0;
int num_or_oper = 0, pair_ = 0;
bool flag;
if (a[i] == '-')flag = true;
else flag = false;
while (i < len) { //依次对a数组中的元素进行处理
if ((a[i] >= '0' && a[i] <= '9') || flag == true) {
if (flag == true) {
b[cnt++] = '#';
flag = false;
}
while (a[i] >= '0' && a[i] <= '9')b[cnt++] = a[i++];
b[cnt++] = ' '; //如果为数字就直接输出
num_or_oper++;
} else if (a[i] == '(') {
oper[++top] = a[i++];
if (a[i] == '-') flag = true;
pair_++;
} else if (a[i] == ')') {
while (oper[top] != '(') b[cnt++] = oper[top--];
top--;
i++;
pair_--;
} else { //输入为操作符
while ((top != 0) && (oper[top] != '(') && (!judge(a[i], oper[top]))) { //出栈的条件:栈未空,操作优先级低,而且栈内不是左括号
b[cnt++] = oper[top--];
}
oper[++top] = a[i++]; //运算符直接入栈
num_or_oper--;
}
}
while (top != 0)b[cnt++] = oper[top--];
if (pair_ == 0 && num_or_oper == 1) return true;
else return false;
}
int calc(char b[]) {
int s = 1, i = 0;
int stacks[255], top = 0;
int len = strlen(b);
memset(stacks, 0, sizeof(stacks));
int flag = false;
while (i < len) {
switch (b[i]) {
case '+':
stacks[--top] += stacks[top + 1];
break;
case '-':
stacks[--top] -= stacks[top + 1];
break;
case '*':
stacks[--top] *= stacks[top + 1];
break;
case '/':
stacks[--top] /= stacks[top + 1];
break;
case '^':
s = 1;
while (stacks[top]--) s *= stacks[top - 1];
stacks[--top] = s;
break;
default :
if (b[i] == '#')flag = true;
s = 0;
while (b[i] != ' ') s = s * 10 + b[i++] - '0';
if (flag) {
stacks[++top] = -s;
flag = false;
} else stacks[++top] = s;
break;
}
i++;
}
return stacks[top];
}
int main() {
char a[1010];
char b[1010];
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
cin >> a;
a[strlen(a) - 1] = 0;
if (tf(a, b)) cout << calc(b) << endl;
else cout << "NO";
return 0;
}