nyoj--299 Matrix Power Series(矩阵 + 二分)

nyoj 299

题解

Sk=A+A1+A2+...+Ak

if k is even :
Sk=(A1+A2++Ak/2)+Ak/2(A1+A2++Ak/2) =Sk/2+Ak/2Sk/2 =Sk/2(E+Ak/2)

if k is odd :
Sk=Sk1+Ak

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
const int N = 30;

struct mat{
    int M[N][N];
    mat(){ memset(M, 0, sizeof(M)); }
};

int n, k, mod;

mat mul(mat A, mat B)
{
    mat C;
    for(int i = 0; i < N; ++i)
        for(int j = 0; j < N; ++j)
            for(int k = 0; k < N; ++k)
                C.M[i][j] = (C.M[i][j] + A.M[i][k] * B.M[k][j]) % mod;
    return C;
}

mat add(mat A, mat B)
{
    mat C;
    for(int i = 0; i < N; ++i)
    {
        for(int j = 0; j < N; ++j)
        {
            C.M[i][j] = (A.M[i][j] + B.M[i][j]) % mod;
        }
    }
    return C;
}

mat pow(mat A, int p)
{
    mat E;
    for(int i = 0; i < N; ++i) E.M[i][i] = 1;
    while(p){
        if(p & 1) E = mul(E, A);
        A = mul(A, A);
        p >>= 1;
    }
    return E;
}

mat solve(mat A, int k)
{
    if(k == 1) return A;
    if(k & 1)  return add(pow(A, k), solve(A, k - 1));

    mat E;
    for(int i = 0; i < N; ++i) E.M[i][i] = 1;

    mat T = add(pow(A, k >> 1), E);
    return mul(solve(A, k >> 1), T);
}

int main()
{
    mat A;

    scanf("%d %d %d", &n, &k, &mod);
    for(int i = 0; i < n; ++i)
        for(int j = 0; j < n; ++j)
            scanf("%d", &A.M[i][j]);

    mat ans = solve(A, k);
    for(int i = 0; i < n; ++i)
    {
        for(int j = 0; j < n; ++j)
        {
            if(j) printf(" ");
            printf("%d", ans.M[i][j]);
        }
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值