from:https://blog.csdn.net/u011412768/article/details/86714540
亲测有效的方法:
1、余弦相似性(cosine)
(1)使用sklearn中的向量相似性的计算包,代码如下:
这个函数的输入是n个长度相同的list或者array,函数的处理是计算这n个list两两之间的余弦相似性,最后生成的相似矩阵中的s[i][j]表示的是原来输入的矩阵中的第i行和第j行两个向量的相似性,所以生成的是n*n的相似性矩阵
from sklearn.metrics.pairwise import cosine_similarity
cosine_similarity([1, 0, 0, 0], [1, 0, 0, 0])
(2)使用scipy包中的距离计算,代码如下:
这里的vec1和vec2都是一维的array向量。
from scipy.spatial.distance import cosine
cosine(vec1, vec2)
2、皮尔森相关系数(pearson)
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pearsonr(a, b)
(0.8660254037844386, 0.011724811003954654)
>>> stats.pearsonr([1,2,3,4,5], [5,6,7,8,7])
(0.83205029433784372, 0.080509573298498519)
前面的0.866025和0.862050即为所要求的相关系数,具体用法参见:scipy.stats.pearsonr
3、欧式距离
欧式距离,即欧几里得距离,这里的计算有三种方式:
(1)已知vec1和vec2是两个Numpy array,即数组,使用numpy包计算:
import numpy
dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2)))
(2)也是使用numpy包,相对更加直接,代码如下:
dist = numpy.linalg.norm(vec1 - vec2)
(3) 使用sklearn中的向量相似性的计算包,这个没有具体使用,就不贴代码了。
---------------------
作者:_____miss
来源:CSDN
原文:https://blog.csdn.net/u011412768/article/details/86714540
版权声明:本文为博主原创文章,转载请附上博文链接!