原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-1-2转载请标明出处
Abstract: 介绍点乘,length
Keywords: dot product,length
点乘和长度
点乘
点乘,也就是说向量乘法不止一种,我们今天来介绍的是比较常用的点乘,出了乘法,其实里面还有加法:
定义
dot product or inner product of
v
\textbf{v}
v and
w
\textbf{w}
w
That is
v
=
[
v
1
v
2
]
w
=
[
w
1
w
2
]
\textbf{v}=\begin{bmatrix} v_1\\v_2 \end{bmatrix}\\ \textbf{w}=\begin{bmatrix} w_1\\w_2 \end{bmatrix}\\
v=[v1v2]w=[w1w2]
v ⋅ w = v 1 × w 1 + v 2 × w 2 \textbf{v}\cdot \textbf{w} = v_1 \times w_1+v_2 \times w_2 v⋅w=v1×w1+v2×w2
v和w和互换位置,也就是交换律存在。对于多维向量
点乘的结果是:
v ⋅ w = ∑ i = 1 n v i ∗ w i \textbf{v}\cdot\textbf{w}=\sum_{i=1}^{n}v_i*w_i v⋅w=i=1∑nvi∗wi
几何理解
其实代数是完全不需要借助几何图形,也能够非常严谨完备证明所有之间的内在关系,但是将代数与几何相互结合的情况下,可以比较轻松的解决一些几何问题,通过简单的数字计算
长度
长度,向量是有长度有方向的,方向,我们按照坐标起点和终点来确定的,长度也是,按照二维平面,两点之间距离(更准确的说是笛卡尔坐标系下,利用勾股定理来计算的距离)
比如
(
0
,
0
)
(0,0)
(0,0) 到
(
v
1
,
v
2
)
(v_1,v_2)
(v1,v2) 的距离
∣
v
∣
=
v
1
2
+
v
2
2
|\textbf{v}|=\sqrt{v_1^2+v_2^2}
∣v∣=v12+v22
so
∣
v
∣
2
=
v
1
2
+
v
2
2
|\textbf{v}|^2=v_1^2+v_2^2
∣v∣2=v12+v22
眼熟不?厉害不?意外不?
没错就是
v
⋅
v
\textbf{v}\cdot\textbf{v}
v⋅v
自己和自己的点乘结果就是向量长度的平方。
单位长度向量(Unit Vector)
长度为1的向量,获得方法,非零向量,所有分量除以自己的长度
Angles
90°
点乘结果为0的时候,两个向量夹角为直角,证明:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EJ12xh11-1592543714284)(https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/Math-Linear-Algebra-Chapter-1-2/90.png)]
其他角度
后面我们使用到矩阵以后,这个夹角基本没用,但是单位长度的向量相乘,其结果是他们夹角的cos值
Conclusion
这一章讲了线性代数的核心,也就是我们知识树的根基算是讲完了,然后顺着根不断的遍历,这样先后顺序能使知识贯通,顺便吐个槽,我tm就不明白了,为啥上学的时候老师上来就干行列式,干了三个星期,直接干迷糊了,所以,我劝大家,看线性代数的书,如果前三章就有行列式了,这书就不用看了!