dot product【点积】

本文详细介绍了点积的概念及其在数学中的定义,并进一步解释了其在机器学习中的应用。此外,还介绍了Frobenius内积的概念,即矩阵内积,适用于两个相同大小的矩阵之间的运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1)概念

点积在数学中,又称数量积(dot product; scalar product),是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。

两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:

a·b=a1b1+a2b2+……+anbn。

使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:

a·b=(a^T)*b,这里的a^T指示矩阵a的转置

(2)机器学习中几种常见的乘积(product)

参考:(1条消息) 机器学习中几种常见的乘积(product)_oldlybaby的博客-CSDN博客_frobenius内积

一、Frobenius inner product (矩阵内积)
适用范围:两个相同大小的矩阵
符号表示:< A , B > F
定义:给定两个大小均为m × n m \times nm×n的实矩阵A , B \mathbf{A},\mathbf{B}A,B,即:

二、dot product (点积)
注:矩阵内积退化成向量形式就是点积,也可以称作向量内积

适用范围:维度相同的两个向量
符号表示:a ⋅ b 
定义:
对于两向量 a=[a1, ... ,an]和b = [ b 1 ,   . . .   , b n ]



持续学习!!! 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值