【线代笔记】2.5 Inverse Matrices - 逆矩阵

2.5 Inverse Matrices - 逆矩阵

一个矩阵的逆乘上自身,结果为单位矩阵

对于一个矩阵A,如果可逆,就存在逆矩阵A-1,满足
A − 1 A = I a n d A A − 1 = I A^{-1}A=I \quad and \quad AA^{-1}=I A1A=IandAA1=I

方阵A是否一定存在逆?关于逆矩阵有以下6点需要知道

  1. 当且仅当消元产生了n个主元的时候,逆矩阵才存在

  2. 矩阵A不能够同时拥有两个逆矩阵

  3. A可逆,则 A x = b A\mathbf{x}=\mathbf{b} Ax=b的唯一解就是 x = A − 1 b \mathbf{x}=A^{-1} \mathbf{b} x=A1b

  4. 若存在非零解使得 A x = 0 A\mathbf{x}=\mathbf{0} Ax=0,那A就不可逆

    因为若有x满足上述情况,则A的各列并非线性独立,有一列可以用其他列的线性组合来表示

    则不满足后文所说的一定要有n个主元的情况

  5. 一个(2,2)的矩阵可逆当且仅当 a d − b c ad-bc adbc不为零

  6. 有逆矩阵的对角矩阵的对角项不为零


The Inverse of a Product - 点积AB的逆

点积AB有逆当且仅当两个因子AB都各自有逆,且矩阵大小相同

如果AB都可逆的话,AB也是可逆的
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

对于消元矩阵E,它的逆矩阵很好理解,就是相反的操作
E = [ 1 0 0 − 5 1 0 0 0 1 ]  and  E − 1 = [ 1 0 0 5 1 0 0 0 1 ] E=\left[\begin{array}{rrr} {1} & {0} & {0} \\ \mathbf{-5} & {1} & {0} \\ {0} & {0} & {1} \end{array}\right]\quad \text { and } \quad E^{-1}=\left[\begin{array}{ccc} {1} & {0} & {0} \\ \mathbf{5} & {1} & {0} \\ {0} & {0} & {1} \end{array}\right] E=150010001 and E1=150010001

若是连续的两个消元操作呢,我们有另一个消元矩阵F
F = [ 1 0 0 0 1 0 0 − 4 1 ]  and  F − 1 = [ 1 0 0 0 1 0 0 4 1 ] F=\left[\begin{array}{rrr} {1} & {0} & {0} \\ {0} & {1} & {0} \\ {0} & \mathbf{-4} & {1} \end{array}\right] \quad \text { and } \quad F^{-1}=\left[\begin{array}{lll} {1} & {0} & {0} \\ {0} & {1} & {0} \\ {0} & \mathbf{4} & {1} \end{array}\right] F=100014001 and F1=100014001

连续操作FE以及他们的逆如下所述
F E = [ 1 0 0 − 5 1 0 20 − 4 1 ]  is inverted by  E − 1 F − 1 = [ 1 0 0 5 1 0 0 4 1 ] F E=\left[\begin{array}{rrr} {1} & {0} & {0} \\ {-5} & {1} & {0} \\ \mathbf{20} & {-4} & {1} \end{array}\right] \quad \text { is inverted by } \quad E^{-1} F^{-1}=\left[\begin{array}{ccc} {1} & {0} & {0} \\ \mathbf{5} & {1} & {0} \\ \mathbf{0} & \mathbf{4} & {1} \end{array}\right] FE=1520014001 is inverted by E1F1=150014001

不同原因在于,左侧矩阵使用F消元的时候,第二行已经在矩阵E的作用下变化了,在矩阵FE的顺序下,第三行的20表明了第一行对其的影响,而右侧矩阵的顺序并不会造成这样的影响


Calculating A-1 by Gauss-Jordan Elimination - 高斯-若尔当消元法

我们需要逆,但是很多时候我们不需要直接计算逆

高斯-若尔当消元法的基础是,我们已经知道 A A − 1 = I AA^{-1}=I AA1=IAA-1 的第一列的结果即为单位矩阵的第一列(1,0,0)
A A − 1 = A [ x 1   x 2   x 3 ] = [ e 1   e 2   e 3 ] = I AA^{-1}=A[x_1 \ x_2 \ x_3]=[e_1 \ e_2 \ e_3]=I AA1=A[x1 x2 x3]=[e1 e2 e3]=I

高斯若尔当的方法使用了块状矩阵 [ A I ] [A \quad I] [AI],有点和增广矩阵类似,但是右侧向量变为了多个列

以下举例,利用高斯-若尔当消元法,求出矩阵K的逆
[ K e 1 e 2 e 3 ] = [ 2 − 1 0 1 0 0 − 1 2 − 1 0 1 0 0 − 1 2 0 0 1 ] \left[\begin{array}{llll} {K} & {e_{1}} & {e_{2}} & {e_{3}} \end{array}\right]=\left[\begin{array}{rrrrrr} \mathbf{2} & \mathbf{-1} & \mathbf{0} & {1} & {0} & {0} \\ \mathbf{-1} & \mathbf{2} & \mathbf{-1} & {0} & {1} & {0} \\ \mathbf{0} & \mathbf{-1} & \mathbf{2} & {0} & {0} & {1} \end{array}\right] [Ke1e2e3]=210121012100010001

① → [ 2 − 1 0 1 0 0 0 3 2 − 1 1 2 1 0 0 − 1 2 0 0 1 ] ( 1 2 row 1 + row 2 ) ①\rightarrow\left[\begin{array}{rrrrrr}{2} & {-1} & {0} & {1} & {0} & {0} \\\mathbf{0} & \mathbf{\frac{3}{2}} & \mathbf{-1} & \mathbf{\frac{1}{2}} & \mathbf{1} & \mathbf{0} \\{0} & {-1} & {2} & {0} & {0} & {1}\end{array}\right]\quad(\frac{1}{2}\text{row}1+\text{row}2) 20012310121210010001(21row1+row2)

② → [ 2 − 1 0 1 0 0 0 3 2 − 1 1 2 1 0 0 0 4 3 1 3 2 3 1 ] ( 2 3 row 2 + row 3 ) ②\rightarrow\left[\begin{array}{rrrrrr}{2} & {-1} & {0} & {1} & {0} & {0} \\{0} & {\frac{3}{2}} & {-1} & {\frac{1}{2}} & {1} & {0} \\\mathbf{0} & \mathbf{0} & \mathbf{\frac{4}{3}} & \mathbf{\frac{1}{3}} & \mathbf{\frac{2}{3}} & \mathbf{1}\end{array}\right]\quad(\frac{2}{3}\text{row}2+\text{row}3) 20012300134121310132001(32row2+row3)

③ → [ 2 − 1 0 1 0 0 0 3 2 0 3 4 3 2 3 4 0 0 4 3 1 3 2 3 1 ] ( 3 4 row 3 + row 2 ) ③\rightarrow\left[\begin{array}{rrrrrr}{2} & {-1} & {0} & {1} & {0} & {0} \\\mathbf{0} & \mathbf{\frac{3}{2}} & \mathbf{0} & \mathbf{\frac{3}{4}} & \mathbf{\frac{3}{2}} & \mathbf{\frac{3}{4}} \\{0} & {0} & {\frac{4}{3}} & {\frac{1}{3}} & {\frac{2}{3}} & {1}\end{array}\right]\quad(\frac{3}{4}\text{row}3+\text{row}2) 2001230003414331023320431(43row3+row2)

④ → [ 2 0 0 3 2 1 1 2 0 3 2 0 3 4 3 2 3 4 0 0 4 3 1 3 2 3 1 ] ( 2 3 row 2 + row 1 ) ④\rightarrow\left[\begin{array}{cccccc}\mathbf{2} & \mathbf{0} & \mathbf{0} & \mathbf{\frac{3}{2}} & \mathbf{1} & \mathbf{\frac{1}{2}} \\{0} & {\frac{3}{2}} & {0} & {\frac{3}{4}} & {\frac{3}{2}} & {\frac{3}{4}} \\{0} & {0} & {\frac{4}{3}} & {\frac{1}{3}} & {\frac{2}{3}} & {1}\end{array}\right]\quad(\frac{2}{3}\text{row}2+\text{row}1) 200023000342343311233221431(32row2+row1)

⑤ → [ 1 0 0 3 4 1 2 1 4 0 1 0 1 2 1 1 2 0 0 1 1 4 1 2 3 4 ] = [ I x 1 x 2 x 3 ] = [ I K − 1 ] ⑤\rightarrow\left[\begin{array}{cccccc}\mathbf{1} & {0} & {0} & \mathbf{\frac{3}{4}} & \mathbf{\frac{1}{2}} & \mathbf{\frac{1}{4}} \\{0} & \mathbf{1} & {0} & \mathbf{\frac{1}{2}} & \mathbf{1} & \mathbf{\frac{1}{2}} \\{0} & {0} & \mathbf{1} & \mathbf{\frac{1}{4}} & \mathbf{\frac{1}{2}} & \mathbf{\frac{3}{4}}\end{array}\right]=\begin{bmatrix}I & x_1 & x_2 & x_3\end{bmatrix}=\begin{bmatrix}I & K^{-1}\end{bmatrix} 10001000143214121121412143=[Ix1x2x3]=[IK1]

高斯-若尔当整个消元法的过程就是
Multiply [ A I ] by A − 1 to get [ I A − 1 ] \text{Multiply}\quad\begin{bmatrix}A & I\end{bmatrix}\quad\text{by}\quad A^{-1}\quad\text{to get}\quad\begin{bmatrix}I & A^{-1}\end{bmatrix} Multiply[AI]byA1to get[IA1]

在消元的过程中,由于矩阵 K K K是一个对称矩阵,所以我们也发现了一些特性

  1. 对称矩阵的逆依然是对称的

  2. K是一个三对角线的矩阵,但K的逆是一个密集矩阵(全部填满的)

  3. 第四步得到的K的消元结果的主对角线的积是 2 ( 3 2 ) ( 4 3 ) = 4 2(\frac{3}{2})(\frac{4}{3})=4 2(23)(34)=4,这也是K的行列式值

  4. K的逆可以写成矩阵除以K的行列式值的形式
    K − 1 = 1 4 [ 3 2 1 2 4 2 1 2 3 ] K^{-1}=\frac{1}{4} \begin{bmatrix} 3&2&1\\ 2&4&2\\ 1&2&3 \end{bmatrix} K1=41321242123

    这也间接说明了为什么可逆矩阵的行列式值不能为0

回到核心的问题上,哪一类的矩阵是可逆的?

A − 1 A^{-1} A1存在的条件为: A A A含有完整的n个主元的集合。该结论可通过高斯-若尔当消元法验证

同理一个三角矩阵,若要可逆,则必须对角线上没有任何一项为0

另外还有一个结论
If A C = I then C A = I and C = A − 1 \text{If} \quad AC=I \quad \text{then} \quad CA=I \quad \text{and} \quad C=A^{-1} IfAC=IthenCA=IandC=A1


Recognizing an Invertible Matrix - 直接判断矩阵可逆

我们已经知道判断一个矩阵是否可逆可以看它是否含有完整的n个主元的集合

但有些矩阵我们可以很快的判断其可逆性,因为每一个 a i i a_{ii} aii元素都主导了这一行的非对角元素

对角占优矩阵是可逆的,即每一个 a i i a_{ii} aii都比同行的其他元素的和要大
∣ a i i ∣ > ∑ j ≠ i ∣ a i j ∣ |a_{ii}| > \sum_{j\neq i} |a_{ij}| aii>j=iaij

解释:取任何非0向量x,假设最大的分量为 ∣ x i ∣ |x_i| xi,那要使得 A x = 0 A\mathbf{x}=\mathbf{0} Ax=0,就需要该行满足
a i 1 x 1 + ⋯ + a i i x i + ⋯ + a i n x n = 0 a_{i 1} x_{1}+\cdots+a_{i i} x_{i}+\cdots+a_{i n} x_{n}=0 ai1x1++aiixi++ainxn=0

显然,在对角占优的情况下,不可能满足条件这样的条件,因为 ∣ x j ∣ < ∣ x i ∣ |x_j|<|x_i| xj<xi,则有
∑ j ≠ i ∣ a i j x j ∣ ≤ ∑ j ≠ i ∣ a i j ∣ ∣ x i ∣ < ∣ a i i ∣ ∣ x i ∣ \sum_{j\neq i}|a_{ij}x_j|\leq\sum_{j \neq i}|a_{ij}||x_i|<|a_{ii}||x_i| j=iaijxjj=iaijxi<aiixi


总结:本节介绍了逆矩阵,求逆方法,以及判断方法

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值