Inverse Matrices



DEFINITION

  • The matrix A is invertible if there exists a matrix A − 1 A^{-1} A1 that allows
    (1) A − 1 A = I    a n d    A A − 1 = I A^{-1}A=I\space \space and\space\space AA^{-1}=I\tag{1} A1A=I  and  AA1=I(1)

IMPORTANT NOTES

1. The inverse exists if and only if elimination produces n pivots (n by n matrix)

2. The matrix A cannot have two different inverses

3. If A is invertible, the one and only solution to Ax=b is x= A − 1 A^{-1} A1b

4. Suppose there is a nonezero vector x to get Ax=0. Then A cannot have an inverse.
  if A is invertible ,then Ax=0 can only have the zero solution x= A − 1 A^{-1} A1 0=0

5.A diagonal matrix is invertible provided there is no diagonal entries are zero

         If A = { d 1 ⋱   ⋱ d n } A= \left\{ \begin{matrix} d_1 & & & \\ &\ddots & \ & \\ & & \ddots & \\ & & & d_n \end{matrix} \right\} A=d1 dn     then     A − 1 A^{-1} A1= { 1 d 1 ⋱   ⋱ 1 d n } \left\{ \begin{matrix} \frac{1}{d_1} & & & \\ &\ddots & \ & \\ & & \ddots & \\ & & & \frac{1}{d_n} \end{matrix} \right\} d11 dn1



The Inverse of Product AB

  • If A and B are invertible then so is AB. Inverse of a product AB is
    ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
    NOTE: the order is reversed


Calculating A − 1 A^{-1} A1 by Gauss-Jordan Elimination

  • Multiply [ A   I A\space I A I] by A − 1 A^{-1} A1 to get [ I   A − 1 I \space A^{-1} I A1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值