文章目录
DEFINITION
- The matrix A is invertible if there exists a matrix
A
−
1
A^{-1}
A−1 that allows
(1) A − 1 A = I a n d A A − 1 = I A^{-1}A=I\space \space and\space\space AA^{-1}=I\tag{1} A−1A=I and AA−1=I(1)
IMPORTANT NOTES
1. The inverse exists if and only if elimination produces n pivots (n by n matrix)
2. The matrix A cannot have two different inverses
3. If A is invertible, the one and only solution to Ax=b is x= A − 1 A^{-1} A−1b
4. Suppose there is a nonezero vector x to get Ax=0. Then A cannot have an inverse.
if A is invertible ,then Ax=0 can only have the zero solution x=
A
−
1
A^{-1}
A−1 0=0
5.A diagonal matrix is invertible provided there is no diagonal entries are zero
If A = { d 1 ⋱ ⋱ d n } A= \left\{ \begin{matrix} d_1 & & & \\ &\ddots & \ & \\ & & \ddots & \\ & & & d_n \end{matrix} \right\} A=⎩⎪⎪⎨⎪⎪⎧d1⋱ ⋱dn⎭⎪⎪⎬⎪⎪⎫ then A − 1 A^{-1} A−1= { 1 d 1 ⋱ ⋱ 1 d n } \left\{ \begin{matrix} \frac{1}{d_1} & & & \\ &\ddots & \ & \\ & & \ddots & \\ & & & \frac{1}{d_n} \end{matrix} \right\} ⎩⎪⎪⎨⎪⎪⎧d11⋱ ⋱dn1⎭⎪⎪⎬⎪⎪⎫
The Inverse of Product AB
- If A and B are invertible then so is AB. Inverse of a product AB is
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1
NOTE: the order is reversed
Calculating A − 1 A^{-1} A−1 by Gauss-Jordan Elimination
- Multiply [ A I A\space I A I] by A − 1 A^{-1} A−1 to get [ I A − 1 I \space A^{-1} I A−1]