原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-5转载请标明出处
Abstract: 矩阵的“逆”,以及相关计算
Keywords: Inverse,Singular,Gauss-Jordan
矩阵的逆
逆
A − 1 A^{-1} A−1
逆,就是乘法的逆,也就是你和你的逆乘起来等于单位的你,如果你是矩阵,那就是单位矩阵,如果你是实数,那逆就是倒数,当然如果是是0,你就没有逆了,如果有了,那就逆天了😆
逆的表示很简单
I
=
A
A
−
1
I=AA^{-1}
I=AA−1
上面就是我那段解释的数学语言,
A
−
1
A^{-1}
A−1 是
A
A
A 的逆,由于矩阵乘法有顺序问题,当A是方阵的时候:
I
=
A
−
1
A
I=A^{-1}A
I=A−1A
一个矩阵可逆,那么他的左逆和右逆一致,就是他的逆。
Notes
可以理解为矩阵逆的性质或者特点,原文标记为Note
Note1:
The Inverse exist if and only if elimination produces n pivots(row exchanges are allowed)
并不是所有矩阵都有逆!所以,如何判断矩阵是否可逆(invertible)就是求矩阵逆的第一步,要是不可逆,那就不能求逆了。矩阵逆的存在当且仅当消元后产生n个主元(允许行交换)。
Note2:
The matrix A cannot have two different inverse.
解释下,利用了乘法结合律(parentheses),利用左乘和右乘来证明矩阵的左逆和右逆相等
简单的证明:
Suppose
B
A
=
I
BA=I
BA=I ,
A
C
=
I
AC=I
AC=I Then
B
=
C
B=C
B=C :
B
(
A
C
)
=
(
B
A
)
C
B(AC)=(BA)C
B(AC)=(BA)C
Gives
B
I
=
I
C
BI=IC
BI=IC
or
B
=
C
B=C
B=C
Note3:
if A is invertible, the one and only solution to A x = b Ax=b Ax=b is x = A − 1 b x=A^{-1}b x=A−1b
这个Note主要是说明
A
x
=
b
Ax=b
Ax=b有解的情况,也就是系数矩阵可逆,或者说主元数量为N
证明:
A
x
=
b
Ax=b
Ax=b
Then:
x
=
A
−
1
A
x
=
A
−
1
b
x
=
A
−
1
b
x=A^{-1}Ax=A^{-1}b\\\\ x=A^{-1}b
x=A−1Ax=A−1bx=A−1b
Note4:
This is important,Suppose there is nonzero vector x \textbf{x} x such that A x = 0 Ax=0 Ax=0 then Acannot have an inverse . No matrix can bring 0 \textbf{0} 0 back to x \textbf{x} x
解释一下,这一条是重要的一个note,这是后面向量空间的一个重要结论(后面再说,这个不着急,这是线性代数的最核心内容),如果
A
x
=
0
Ax=0
Ax=0 ,其中x不是0,那么A没有逆,证明如下:
A
x
=
0
A
−
1
A
x
=
A
−
1
0
x
=
A
−
1
0
Ax=0\\ A^{-1}Ax=A^{-1}0\\ x=A^{-1}0
Ax=0A−1Ax=A−10x=A−10
上面式子中
x
≠
0
x\neq0
x=0所以等号不可能成立,那么
A
−
1
A^{-1}
A−1不存在
Note5:
A 2x2 matrix is invertible if and only if a d − b c ad-bc ad−bc is not zero:
[ a b c d ] − 1 = 1 a d − b c [ d − b − c a ] \begin{bmatrix} a&b\newline c&d\end{bmatrix}^{-1} = \frac{1}{ad-bc}\begin{bmatrix}d&-b\newline{-c}&a\end{bmatrix} [abcd]−1=ad−bc1[d−b−ca]
本note的解释就是,后面讲到行列式的时候就会有详细的证明了
Note6:
A diagonal matrix has an inverse provided no diagonal entries are zero:
A
=
[
d
1
⋱
d
n
]
A=\begin{bmatrix}d_1&\,&\, \\\,& \ddots &\,\\\,&\,& d_n\end{bmatrix}
A=⎣⎡d1⋱dn⎦⎤
then
A
−
1
=
[
1
/
d
1
⋱
1
/
d
n
]
A^{-1}=\begin{bmatrix}1/d_1&\,&\,\\\,& \ddots &\,\\\,&\,& 1/d_n\end{bmatrix}
A−1=⎣⎡1/d1⋱1/dn⎦⎤
这是一个关于对角矩阵的故事,对角矩阵的对角元素全部非零,其他元素为0,其逆是其所有元素的倒数
( A B ) − 1 (AB)^{-1} (AB)−1 and ( A B … Z ) − 1 (AB\dots Z)^{-1} (AB…Z)−1
两个矩阵相乘的逆,当然你可以把结果一步一步算出来,得到算数结果,然后求逆,但这里的逆视为一种操作,不关系结果是多少,只关注本操作的一系列特性,因为这些特性能是计算变得更简单,按照最基本计算规律可能无法计算,这也是“计算方法”或者“数值分析”课程所最核心的内容,按照某些算法和计算性质,能够优化计算速度,提高计算结果精确度,当然这些都是通过计算机计算的,所数值分析是cs的课程
两个矩阵相乘的逆
(
A
B
)
−
1
=
B
−
1
A
−
1
(AB)^{-1}=B^{-1}A^{-1}
(AB)−1=B−1A−1
两个矩阵要交换位置
(
A
B
C
)
−
1
=
C
−
1
B
−
1
A
−
1
(ABC)^{-1}=C^{-1}B^{-1}A^{-1}
(ABC)−1=C−1B−1A−1
(
A
B
…
Z
)
−
1
=
Z
−
1
…
B
−
1
A
−
1
(AB\dots Z)^{-1}=Z^{-1} \dots B^{-1}A^{-1}
(AB…Z)−1=Z−1…B−1A−1
三个或者更多个的时候,要完全倒过来
证明方法灰常简单:
(
A
B
)
−
1
(
A
B
)
=
B
−
1
(
A
−
1
A
)
B
=
B
−
1
(
I
)
B
=
B
−
1
B
=
I
(AB)^{-1}(AB)=B^{-1}(A^{-1}A)B=B^{-1}(I)B=B^{-1}B=I
(AB)−1(AB)=B−1(A−1A)B=B−1(I)B=B−1B=I
逆运算与乘法在一起结合就是这样的。
高斯乔丹消元(GAUSS-JORDAN Elimination)
高斯乔丹消元求矩阵的逆,适合小型矩阵的笔算。
其主要基础是矩阵乘法的分块性质
A
−
1
[
A
I
]
=
[
A
−
1
A
A
−
1
I
]
=
[
I
A
−
1
]
A^{-1}\begin{bmatrix}A&&I\end{bmatrix}\\ =\begin{bmatrix}A^{-1}A&&A^{-1}I\end{bmatrix}\\ =\begin{bmatrix}I&&A^{-1}\end{bmatrix}
A−1[AI]=[A−1AA−1I]=[IA−1]
其中最关键的一点是如何让
A
A
A 变成
I
I
I,这里就是高斯消元的主要问题点,首先生成一个曾广矩阵,然后消元小区下三角矩阵,以及上三角矩阵,最后只有一个部分对角矩阵,然后用对角矩阵乘以其倒数,右侧的I就变成了
A
−
1
A^{-1}
A−1
其过程大概如下
[
A
I
]
A
=
L
R
\begin{bmatrix}A&&I\end{bmatrix}\\ A=LR\\
[AI]A=LR
R
=
L
−
1
A
…
(
1
)
L
−
1
[
A
I
]
=
[
R
L
−
1
I
]
R=L^{-1}A\dots (1)\\ L^{-1}\begin{bmatrix}A&&I\end{bmatrix}=\begin{bmatrix}R&&L^{-1}I\end{bmatrix}
R=L−1A…(1)L−1[AI]=[RL−1I]
(1)的主要过程就是通过消元,使得增广矩阵中的A矩阵变成一个上三角矩阵R,对角线一下都是零
R
=
U
D
…
(
2
)
D
=
U
−
1
R
U
−
1
[
R
L
−
1
I
]
=
[
D
U
−
1
L
−
1
I
]
R=UD \dots(2)\\ D=U^{-1}R\\ U^{-1}\begin{bmatrix}R&&L^{-1}I\end{bmatrix}=\begin{bmatrix}D&&U^{-1}L^{-1}I\end{bmatrix}
R=UD…(2)D=U−1RU−1[RL−1I]=[DU−1L−1I]
(2)回代过程,D只有对角线上有元素,其他全部是零
I
=
D
−
1
D
…
(
3
)
[
D
L
−
1
I
U
−
1
]
D
−
1
=
[
I
D
−
1
U
−
1
L
−
1
I
]
I=D^{-1}D\dots(3)\\ \begin{bmatrix}D&&L^{-1}IU^{-1}\end{bmatrix}D^{-1}=\begin{bmatrix}I&&D^{-1}U^{-1}L^{-1}I\end{bmatrix}
I=D−1D…(3)[DL−1IU−1]D−1=[ID−1U−1L−1I]
(3)对角线归一化,使得A对角线上的元素变成1
同样的一些列操作作用在右半部分
I
I
I上,就能得到一个
D
−
1
U
−
1
L
−
1
D^{-1}U^{-1}L^{-1}
D−1U−1L−1的矩阵
因为
A
=
L
U
D
A=LUD
A=LUD
所以
A
−
1
=
D
−
1
U
−
1
L
−
1
A^{-1}=D^{-1}U^{-1}L^{-1}
A−1=D−1U−1L−1
可知,其结果是正确的。
逆矩阵的性质(Properties)
1:一个矩阵如果是对称的,并且有逆,那么逆也是对称的。
2:三角矩阵的逆如果存在可能是一个稠密矩阵
性质2很重要,有些稀疏矩阵的逆可能是稠密矩阵,这在数值分析中导致某些算法失效,或者效率急剧下降。
奇异和可逆(Singular vs Invertible0
奇异矩阵,和可逆矩阵是一对反义词,奇异这个翻译不知道是谁根据啥想出来的,但是很有迷惑性,不知道啥是奇异矩阵,什么又是非奇异的,奇异矩阵的具体问题我们会在后面学到,但是目前奇异矩阵可以当做没有逆的矩阵。
三角矩阵可逆的唯一条件是对角元素全部非0
Conclusion
本文主要介绍下矩阵逆的一些性质,证明Gauss-Jordan的过程是我自己写的,可能有问题,如果有不严谨的地方,希望大家给予指点,谢谢