【线性代数】2-5:逆(Inverse)

原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-2-5转载请标明出处

Abstract: 矩阵的“逆”,以及相关计算
Keywords: Inverse,Singular,Gauss-Jordan

矩阵的逆

A − 1 A^{-1} A1

逆,就是乘法的逆,也就是你和你的逆乘起来等于单位的你,如果你是矩阵,那就是单位矩阵,如果你是实数,那逆就是倒数,当然如果是是0,你就没有逆了,如果有了,那就逆天了😆
逆的表示很简单
I = A A − 1 I=AA^{-1} I=AA1
上面就是我那段解释的数学语言, A − 1 A^{-1} A1 A A A 的逆,由于矩阵乘法有顺序问题,当A是方阵的时候:
I = A − 1 A I=A^{-1}A I=A1A

一个矩阵可逆,那么他的左逆和右逆一致,就是他的逆。

Notes

可以理解为矩阵逆的性质或者特点,原文标记为Note

Note1:
The Inverse exist if and only if elimination produces n pivots(row exchanges are allowed)

并不是所有矩阵都有逆!所以,如何判断矩阵是否可逆(invertible)就是求矩阵逆的第一步,要是不可逆,那就不能求逆了。矩阵逆的存在当且仅当消元后产生n个主元(允许行交换)。

Note2:
The matrix A cannot have two different inverse.

解释下,利用了乘法结合律(parentheses),利用左乘和右乘来证明矩阵的左逆和右逆相等
简单的证明:
Suppose B A = I BA=I BA=I , A C = I AC=I AC=I Then B = C B=C B=C :
B ( A C ) = ( B A ) C B(AC)=(BA)C B(AC)=(BA)C
Gives
B I = I C BI=IC BI=IC
or
B = C B=C B=C

Note3:
if A is invertible, the one and only solution to A x = b Ax=b Ax=b is x = A − 1 b x=A^{-1}b x=A1b

这个Note主要是说明 A x = b Ax=b Ax=b有解的情况,也就是系数矩阵可逆,或者说主元数量为N
证明:
A x = b Ax=b Ax=b
Then:
x = A − 1 A x = A − 1 b x = A − 1 b x=A^{-1}Ax=A^{-1}b\\\\ x=A^{-1}b x=A1Ax=A1bx=A1b

Note4:
This is important,Suppose there is nonzero vector x \textbf{x} x such that A x = 0 Ax=0 Ax=0 then Acannot have an inverse . No matrix can bring 0 \textbf{0} 0 back to x \textbf{x} x

解释一下,这一条是重要的一个note,这是后面向量空间的一个重要结论(后面再说,这个不着急,这是线性代数的最核心内容),如果 A x = 0 Ax=0 Ax=0 ,其中x不是0,那么A没有逆,证明如下:
A x = 0 A − 1 A x = A − 1 0 x = A − 1 0 Ax=0\\ A^{-1}Ax=A^{-1}0\\ x=A^{-1}0 Ax=0A1Ax=A10x=A10
上面式子中 x ≠ 0 x\neq0 x=0所以等号不可能成立,那么 A − 1 A^{-1} A1不存在

Note5:
A 2x2 matrix is invertible if and only if a d − b c ad-bc adbc is not zero:
[ a b c d ] − 1 = 1 a d − b c [ d − b − c a ] \begin{bmatrix} a&b\newline c&d\end{bmatrix}^{-1} = \frac{1}{ad-bc}\begin{bmatrix}d&-b\newline{-c}&a\end{bmatrix} [abcd]1=adbc1[dbca]
本note的解释就是,后面讲到行列式的时候就会有详细的证明了

Note6:
A diagonal matrix has an inverse provided no diagonal entries are zero:

A = [ d 1       ⋱       d n ] A=\begin{bmatrix}d_1&\,&\, \\\,& \ddots &\,\\\,&\,& d_n\end{bmatrix} A=d1dn
then
A − 1 = [ 1 / d 1       ⋱       1 / d n ] A^{-1}=\begin{bmatrix}1/d_1&\,&\,\\\,& \ddots &\,\\\,&\,& 1/d_n\end{bmatrix} A1=1/d11/dn
这是一个关于对角矩阵的故事,对角矩阵的对角元素全部非零,其他元素为0,其逆是其所有元素的倒数

( A B ) − 1 (AB)^{-1} (AB)1 and ( A B … Z ) − 1 (AB\dots Z)^{-1} (ABZ)1

两个矩阵相乘的逆,当然你可以把结果一步一步算出来,得到算数结果,然后求逆,但这里的逆视为一种操作,不关系结果是多少,只关注本操作的一系列特性,因为这些特性能是计算变得更简单,按照最基本计算规律可能无法计算,这也是“计算方法”或者“数值分析”课程所最核心的内容,按照某些算法和计算性质,能够优化计算速度,提高计算结果精确度,当然这些都是通过计算机计算的,所数值分析是cs的课程
两个矩阵相乘的逆
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
两个矩阵要交换位置
( A B C ) − 1 = C − 1 B − 1 A − 1 (ABC)^{-1}=C^{-1}B^{-1}A^{-1} (ABC)1=C1B1A1
( A B … Z ) − 1 = Z − 1 … B − 1 A − 1 (AB\dots Z)^{-1}=Z^{-1} \dots B^{-1}A^{-1} (ABZ)1=Z1B1A1
三个或者更多个的时候,要完全倒过来
证明方法灰常简单:
( A B ) − 1 ( A B ) = B − 1 ( A − 1 A ) B = B − 1 ( I ) B = B − 1 B = I (AB)^{-1}(AB)=B^{-1}(A^{-1}A)B=B^{-1}(I)B=B^{-1}B=I (AB)1(AB)=B1(A1A)B=B1(I)B=B1B=I
逆运算与乘法在一起结合就是这样的。

高斯乔丹消元(GAUSS-JORDAN Elimination)

高斯乔丹消元求矩阵的逆,适合小型矩阵的笔算。
其主要基础是矩阵乘法的分块性质
A − 1 [ A I ] = [ A − 1 A A − 1 I ] = [ I A − 1 ] A^{-1}\begin{bmatrix}A&&I\end{bmatrix}\\ =\begin{bmatrix}A^{-1}A&&A^{-1}I\end{bmatrix}\\ =\begin{bmatrix}I&&A^{-1}\end{bmatrix} A1[AI]=[A1AA1I]=[IA1]
其中最关键的一点是如何让 A A A 变成 I I I,这里就是高斯消元的主要问题点,首先生成一个曾广矩阵,然后消元小区下三角矩阵,以及上三角矩阵,最后只有一个部分对角矩阵,然后用对角矩阵乘以其倒数,右侧的I就变成了 A − 1 A^{-1} A1

其过程大概如下
[ A I ] A = L R \begin{bmatrix}A&&I\end{bmatrix}\\ A=LR\\ [AI]A=LR

R = L − 1 A … ( 1 ) L − 1 [ A I ] = [ R L − 1 I ] R=L^{-1}A\dots (1)\\ L^{-1}\begin{bmatrix}A&&I\end{bmatrix}=\begin{bmatrix}R&&L^{-1}I\end{bmatrix} R=L1A(1)L1[AI]=[RL1I]
(1)的主要过程就是通过消元,使得增广矩阵中的A矩阵变成一个上三角矩阵R,对角线一下都是零
R = U D … ( 2 ) D = U − 1 R U − 1 [ R L − 1 I ] = [ D U − 1 L − 1 I ] R=UD \dots(2)\\ D=U^{-1}R\\ U^{-1}\begin{bmatrix}R&&L^{-1}I\end{bmatrix}=\begin{bmatrix}D&&U^{-1}L^{-1}I\end{bmatrix} R=UD(2)D=U1RU1[RL1I]=[DU1L1I]
(2)回代过程,D只有对角线上有元素,其他全部是零
I = D − 1 D … ( 3 ) [ D L − 1 I U − 1 ] D − 1 = [ I D − 1 U − 1 L − 1 I ] I=D^{-1}D\dots(3)\\ \begin{bmatrix}D&&L^{-1}IU^{-1}\end{bmatrix}D^{-1}=\begin{bmatrix}I&&D^{-1}U^{-1}L^{-1}I\end{bmatrix} I=D1D(3)[DL1IU1]D1=[ID1U1L1I]
(3)对角线归一化,使得A对角线上的元素变成1
同样的一些列操作作用在右半部分 I I I上,就能得到一个 D − 1 U − 1 L − 1 D^{-1}U^{-1}L^{-1} D1U1L1的矩阵
因为
A = L U D A=LUD A=LUD
所以
A − 1 = D − 1 U − 1 L − 1 A^{-1}=D^{-1}U^{-1}L^{-1} A1=D1U1L1
可知,其结果是正确的。

逆矩阵的性质(Properties)

1:一个矩阵如果是对称的,并且有逆,那么逆也是对称的。
2:三角矩阵的逆如果存在可能是一个稠密矩阵

性质2很重要,有些稀疏矩阵的逆可能是稠密矩阵,这在数值分析中导致某些算法失效,或者效率急剧下降。

奇异和可逆(Singular vs Invertible0

奇异矩阵,和可逆矩阵是一对反义词,奇异这个翻译不知道是谁根据啥想出来的,但是很有迷惑性,不知道啥是奇异矩阵,什么又是非奇异的,奇异矩阵的具体问题我们会在后面学到,但是目前奇异矩阵可以当做没有逆的矩阵。
三角矩阵可逆的唯一条件是对角元素全部非0

Conclusion

本文主要介绍下矩阵逆的一些性质,证明Gauss-Jordan的过程是我自己写的,可能有问题,如果有不严谨的地方,希望大家给予指点,谢谢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值