随着人工智能技术的不断发展,越来越多的人开始将AI工具融入到工作流程中。ChatGPT作为一个强大的语言模型,正在改变我们的工作方式。
然而,如何高效使用这款工具成为了一个热门话题。本文将深入探讨ChatGPT的应用场景,帮助你迅速掌握ChatGPT的使用方法,从而提升工作效率。
如何使用 ChatGPT?
要使用 Chat GPT,你需要做的第一件事是在 OpenAI 上创建一个帐户。下面是使用 Chat GPT 的详细步骤。
1. 国内使用ChatGPT的条件
-
配置好海外网络环境。
-
准备好有效的邮箱地址,推荐使用Google、Outlook邮箱。
-
遵守使用政策,以避免帐户被暂停。
2. 访问ChatGPT网站
使用聊天 CGP 的第一步是在 OpenAI 上注册并创建一个账户。访问 https://chatgpt.com。
3. 创建账户
访问 OpenAI 网站后,屏幕上将显示以下页面。单击“Log in”选项。如果网站加载需要时间,请刷新页面或稍后再试。
4. 验证你的帐户
成功注册 ChatGPT 后,下一步是验证你的帐户。如果你通过电子邮件 ID 注册,OpenAI 将向你的收件箱发送一封验证电子邮件。按照发送到你邮箱的链接完成验证。填写要求的详细信息并继续。
5. 使用 ChatGPT
在 Chat GPT 上成功创建帐户后,即可免费使用 Chat GPT。
创建帐户后如何使用聊天 GPT?
现在你已成功创建了 ChatGPT 帐户,你可以开始使用它。使用非常简单,只需在文本框中输入你想了解的任何问题即可。
例如,如果你想了解未来一周的天气,那么只需在文本框中输入你的提示即可。
有效使用 ChatGPT 的 10 个技巧
1. 提供清晰简洁的说明
有效使用 ChatGPT 的第一步,也是最重要的一步,就是提供清晰明确的指令。记住,ChatGPT 依赖于人工智能算法,因此结构化和清晰的输入对输出质量至关重要。如果你提供的指令不清晰或模棱两可,ChatGPT 可能无法理解你的意思,从而导致不准确或不相关的结果。
2. 将复杂问题分解成较小的问题
向 ChatGPT 提问时,最好将复杂的问题分解成更小、更易理解的部分。复杂问题可能会结构不合理或不够详细。此外,在解决这类问题时,模型可能会因为试图理解指令而跳过关键步骤。将复杂的问题拆分成多个小问题,有助于产生更准确、更相关和更详细的回复。
3. 通过实例反馈
通过示例学习可以帮助 ChatGPT 更好地理解你的需求。在给出提示时,提供一个你期望输出的示例格式,这样能帮助模型更准确地理解你的要求。此外,使用标准化的反馈也能作为模型学习的参考框架。
现在,我们来看看如何使用 ChatGPT 获得更有效的输出。
4. 尝试不同的措辞
ChatGPT 对措辞的细微变化非常敏感。通过尝试不同的措辞,你可以发现某些措辞是否能引起更准确或更理想的回答。这有助于你对提示进行微调,以获得更好的效果。
5. 使用系统级指令
系统级指令指的是在与 ChatGPT 互动时,通过特定的提示来引导模型的行为。这些提示通常以“系统:”开头,用来设置对话的上下文或提供具体的指示,从而影响模型在整个对话过程中的响应方式,使其更加一致和符合你的需求。
6. 模拟用户行为
通过假扮用户或在提示中提供用户响应示例,你可以引导模型以特定方式作出响应。这在需要模型模拟某个角色或从特定角度生成回复时特别有效。
7. 指定回复格式
如果你需要特定格式的回复,如要点、列表或段落,请在提示中明确提及。这有助于 ChatGPT 理解所需的回复结构和格式,从而提高输出符合你预期的几率。
8. 迭代和完善
如果 ChatGPT 的初始回复令你不满意或不符合你的要求,请改进你的提示,使其更明确,提供更多上下文或重新措辞,以提高响应质量。通过不断迭代,你可以完善提示,从而获得理想的结果。
9. 使用受控生成
受控生成是指在提示中加入指令,以指导回答的风格和长度。例如,你可以在提示中加入 “答案应简短” 或 “使用简洁的语言” 等指示,以影响生成的回答的特点,使其更适合你的需求。
10. 从实例中实践和学习
学习其他人分享的提示示例和回复,可以帮助你更好地使用 ChatGPT。通过借鉴他人的经验和技巧,你能获得新的灵感和方法,从而更成功地与 ChatGPT 交流。学习他人的专业知识还能提高你编写提示的质量。
如何像高手一样使用 ChatGPT ?
1. 总结以便更好地理解
有时候,ChatGPT 的回答可能会很长或很复杂,让人难以理解。通过总结这些回答,你可以提炼出关键细节,使其更容易理解。
这样,你可以更好地利用 AI,而不会被大量信息淹没。你还可以用它来总结长篇文件或文章。例如:
请用 5 个要点总结这篇文章:[链接到网页]
2. 训练 ChatGPT 学习你的写作风格
ChatGPT 可以通过与你的互动学习你的写作风格和偏好。这样,它就能为你提供更准确、更个性化的回复,满足你的个性化需求。为此,你需要经常与 ChatGPT 互动并提供反馈,使其从你的输入中学习。例如:
分析下面文字的风格、语气和语调。然后以相同的风格、语气和语调写一段 100 字左右的新段落,主题为[主题]。[段落]
3. 改变写作风格,提高可读性
有时候,冗长或复杂的文章会让人觉得难以阅读或枯燥乏味。让文章更吸引人的方法之一就是改变写作风格,而 ChatGPT 可以帮助生成特定语气或语调的新文本。
无论你是想让信息性文章更幽默,还是更容易阅读,ChatGPT 都能帮你实现这一目标。例如:
改变下面文字的写作风格,使其能被 12 岁的孩子理解 [文字]。
4. 头脑风暴,寻找新创意
你的社交媒体文章、网站或邮件内容是否缺乏创意?通过浏览功能,ChatGPT 可以生成与最新人工智能新闻相关的热门创意,吸引读者的注意力。
无论你需要的是社交媒体文章、网站内容还是其他任何类型的创意,ChatGPT 都能帮助你跳出固定思维,提出新鲜、有趣的点子。例如:
头脑风暴/提出10个想法来实现[你的目标]
5. 编写和调试代码
许多人使用 ChatGPT 来编程。ChatGPT 可以非常智能地调试代码,并为你生成正确的代码。例如:
这是 [编程语言] 的一段代码。当我运行它时,出现了一个错误 [错误信息]。请帮我重写这段代码,修复这个错误。
6. 指定内容以获得更详细的回复
在使用 ChatGPT 时,你可以在提示中明确说明你想要的内容类型。比如,如果你想增加微博的粉丝,你可以让 ChatGPT 用鼓舞人心的语气,用简单易懂的方式,教微博用户如何增加粉丝。通过提供这些具体的要求,你可以得到更详细、更符合你需求的回复。例如:
使用以下要点为 [主题] 创建一个详细的指南。用小标题和要点来编写结构合理的回复。
响应语气:[语气]
目标读者:[用户]
要点列表:[要点列表]
7. 使用 ChatGPT 编辑内容
最后,ChatGPT 是一个非常好的编辑工具。无论是写邮件、段落、文章还是其他内容,ChatGPT 都能为你的写作提供结构、语法、语气等方面的反馈。例如:
编辑以下文字,使其对我的[网站/社交媒体/简历/其他]更具吸引力
最后
ChatGPT 是一款强大的 AI 工具,可以彻底改变我们处理各种任务的方式。通过本文提到的技巧和方法,你可以充分发挥 ChatGPT 的潜力,生成满足不同需求的个性化回复。
无论是分解复杂问题还是定制写作风格,ChatGPT 都能为头脑风暴、内容创作和问题解决提供多种解决方案。通过不断实践和改进,你可以在工作中利用ChatGPT提高效率、增强创造力和生产力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。