“ 透过现象看本质,才是最应该做的选择 ”
对大模型了解的人应该知道,大模型是因为openAI的GPT模型爆火的,当然大模型的发展也是经过多年的发展才有了今天的地步。
在之前的文章中也介绍过,大模型的全程是大规模预训练语言模型的简称,也就是说大模型刚开始是在语言处理领域大放异彩的。
因此,可以说大模型是深度学习,也就是神经网络模型与自然语言处理相结合而产生的一种技术。
而随着大模型在自然语言处理领域的爆发,一些技术人员开始把大模型应用到图片处理,视频处理等领域,后来慢慢就诞生了处理各种模态数据的模型。
到今天,多模态成为了主流。
多模态大模型
什么是多模态?
模态值得是数据类型,比如文本,图片,视频等;而多模态就是指能够同时处理文本,图片,视频等多种模态数据的模型。
简单来说,多模态大模型就像一个人一样,他既会写字认字,也会绘画欣赏画,他即能通过拍视频的方式表达自己;也能看懂别人视频所表达的思想。
而多模态大模型就是这样,它既能看懂别人的文字,也能看懂别人的视频,也可以把别人的视频用语言表达出来,这就是多模态大模型。
这种实现方式,需要解决很多技术难点,比如说文本和视频或图片内容等多种模态数据之间的融合,模态之间的数据差异问题,数据对齐与一致性问题等。
这种实现多模态大模型的方式,叫做真多模态大模型。
但实现多模态只有这种方式吗?
其实,还有另一种实现多模态的方式或者说方法;那就是在多个处理不同模态数据的大模型之上,构建一个虚拟的“多模态大模型”,我叫他伪多模态大模型。
简单来说就是真实的多模态大模型就相当于一个无所不能的人,天文地理,物理化学,前知五百年后晓五百世;而伪多模态大模型,就相当于给阿斗配一个顶级智囊团,虽然阿斗什么都不懂,但他可以问啊。
就比如说,用户输入一段文字,这时前置模块就可以识别出这是文本模块,那么它就可以问其它的大模型,你们谁能处理文本,然后文本模型就会说我我我。
而如果用户输入一段视频,那么前置模块就可以找一个视频处理的大模型,最后再通过后置的转化模块,把输出数据转化为用户需要的格式。
这就是伪多模态,很多初创企业干的就是这种产品,他们通过集成多种类型的模型,来实现对多种模态数据的处理。
当然,这种伪多模态模型虽然在外人看来都差不多,但我们要知道它们使用的是完全不同的技术;并且,伪多模态大模型虽然能够处理一些简单任务,但在复杂任务中可能就没有真正的多模态模型表现得好了。
很多东西如果不能透过表象看本质,就会导致很大的认知偏差;比如说,我们都以为语音处理的大模型,它是直接处理语音格式的数据,事实上是会有一个前置层,先把语音文件转化为文本格式,然后再让大模型处理。
等大模型处理完之后,再把文本格式的数据转换为语音数据输出,前者技术叫ASR,后者叫TTS。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。