清华大学刘知远团队提出ChatMol模型,基于自然语言进行交互式的分子发现

在大语言模型时代,自然语言将成为人机交互的关键媒介。在生物化学领域,诸如性质预测和分子挖掘等任务至关重要,但在技术上具有挑战性。在自然语言和化学语言中架起分子表达的桥梁可以显著提高这些语言的可解释性和易用性,整合各种来源的化学知识,从而更深入地了解分子。

2024年9月2日,清华大学刘知远老师团队在Bioinformatics上发表文章ChatMol: Interactive Molecular Discovery with Natural Language。

作者提出了ChatMol,利用自然描述和编辑目标分子的语言进行对话式分子设计。ChatMol是一个预训练的分子大语言模型。该模型通过结合实验属性信息、分子空间知识、以及自然语言和化学语言之间的联系,证明了对话式分子设计的有效性。实验结果表明,ChatMol的性能超越了现有模型。

如图1所示,ChatMol在多任务预训练期间将所有具有不同任务前缀的数据混合,在微调期间应用分子映射关联中的插件。在分子设计的每一个训练轮次中,人类用户和智能系统都可以通过化学语言来参考分子,或者通过自然语言来参考化学性质。给定会话历史H(M, T),其中包含分子M1,2,…,p和化学性质描述T1,2,…, q,ChatMol关注研究人员期望智能系统实现的两个主要功能: (1)分子理解:系统需要为H中的分子Mi生成一段性质描述Ti。(2)分子生成:系统还应该生成一个特定的分子Mj满足H中的要求,这可以用自然语言来描述,也可以用相似的分子来描述。由于可能有多个分子与描述相匹配,因此人类用户可以迭代地补充属性描述Tj+1,系统将根据当前的文本描述,生成修改后的分子。

图1 ChatMol结构图

对于传统的文本生成任务,BLEU,ROUGE和METEOR分数被广泛用于衡量预测结果与参考答案的相似性。BLEU分数主要用于评价生成内容的精准率;ROUGE分数主要评价内容的完备性(召回率);METEOR分数通过外部知识来源考虑同义词,主要评价内容的意义相似度。它们也可以应用于分子理解的评价。然而,对于分子生成任务,从分子准确性的角度来看,内容文本相似度并不具有说服力。

对于分子生成,除了使用BLEU分数来衡量文本精度外,作者主要考虑两个方面:匹配率和分子相似度。对于匹配率,要求模型为每个输入生成三个最可能的分子,并计算第一个分子(精确匹配精度)和前三个分子(hit@3精度)的命中频率。对于分子相似性,应用各种指纹系统相似性进行评估,例如Tanimoto相似性。

由于SMILES和自然语言的特征有很大的不同,作者准备了两套编码器和解码器分别对M和T进行处理。每个集合都被设置为一个公共序列到序列(seq2seq)框架,并使用T5模型进行初始化,这是一种被广泛采用的具有220M参数的序列到序列预训练语言模型。在数据准备方面,相应的<M,T>对可以从化学的数据库中获得,其中提供了物质的简短文字介绍。

如果分子名称出现在文本中,可能会导致信息泄露。为了解决这个问题,目标分子的同义词被一般的参考短语取代,比如“分子”。为了进行多回合分子生成,作者基于ChEBI-20创建了一个新的数据集ChEBI-dia。在原始数据集中,用于描述分子M的T通常包含多个句子,描述的顺序从精细结构到整体性质。为了获得多回合文本描述,作者将T分成句子,并颠倒它们的顺序,得到S1,2,…,其中详细信息的数量依次增加。对于第k次训练,有Tk = {S1, S2,…, Sk}。为了得到分子中间结果,作者采用预训练的MolT5-caption2smiles-large模型,自动生成5个候选Mk1,k2,…,对于给定的Tk,随机选择一个作为期望生成的分子Mk,该分子具有RDK指纹相似性,目标是最终答案Mn大于0.5,小于1(即为了避免信息泄露)。这一方法建模了分子映射相关性。

此外,作者过滤掉那些只包含一个对话回合的条目,并删除句子中带有“-”的条目,以避免出现标准化学命名法(例如IUPAC命名法)来直接揭示答案。作者还随机保留一些中间分子与最终答案相似度较低的项,以保持多样性,增强模型的鲁棒性。

为了验证数据集的代表性,作者分析了所有相关分子之间的相似性。RDK分子指纹在训练和测试数据内和数据间的平均相似度均小于0.18;训练集中出现的测试分子不到32%,分子量超过5000g/mol的大分子很少。因此,所涉及的分子范围很广,测试场景具有足够的普遍性。

作者首先进行了流行的预训练范式掩码语言建模(MLM),以确保模型对自然语言和化学语言的基本理解和生成能力。然而,为了处理多模态对话分子设计数据,模型还需要捕获两种语言之间的关联并进行转换。作者使用SciSpacy工具检测文献语料库中的分子实体,然后从PubChem中检索他们的SMILES。给定自然语言片段,分子生成模型需要为依次出现在其中的所有分子生成SMILES表达式。相反,期望分子理解模型生成给定分子的标准名称。通过这种方式,ChatMol以最少的监督建立并行关联。

数据库还可以在下游微调和推断过程中扮演插件的角色。对于生成分子的文本描述,根据模型提示提供了自动注释的实体SMILES字符串。为了避免信息泄露,强制删除提示框中与答案中的分子相同的SMILES字符串。

考虑到分子理解(分子到文本生成)和分子生成(文本到分子生成)是一对相互的任务,而现有的分子SMILES字符串远远超过自然语言中的分子性质描述,ChatMol采用双重学习的框架,这是神经机器翻译中的一种常见机制,以缓解缺乏并行数据的挑战。具体来说,微调后的分子理解模型可以为任何给定的分子生成增强文本描述,并对分子生成训练进行反馈。

注入分子知识是为了深入理解给定的化学语言表达式,生成更合理、更有信息量的自然语言描述。ChatMol使用两种类型的分子知识进行训练。一是属性知识。为此,作者收集了PubChem数据库中实验确定的15种物理和化学性质,包括溶解度、颜色、腐蚀性等。这些性质可以用自然语言直接描述,并为分子理解提供监督信号。二是空间结构知识。分子的空间信息对于理解分子性质至关重要,而SMILES表达式在语言模型中并不能直接表达分子的拓扑结构。为了满足理解分子结构的需要,作者引入了空间相关的预训练任务,使用RDKit工具包来获得输入分子的空间结构。

作者将ChatMol与一些具有代表性的方法进行了比较,如表1和表2所示。在本研究中,分子理解任务上的评测使用不同阈值下的BLEU(BL-2, BL-4),ROUTE(RG-1, RG-2, RG-L)和METEOR(MET)。分子生成采用完全匹配率(EM),前三命中率(hit@3),BLEU,Levenstein距离,以及基于RDK指纹,MACCS指纹和Morgan指纹的相似度进行评估。↑表示数值越高越好,↓表示数值越低越好。结果可见,在分子理解和分子生成任务上,ChatMol相对于现有方法在CheBI和PCdes数据集上均有显著提升,且ChatMol所需的训练步数远少于MolT5。

表1 分子理解:与其他方法对比

表2 分子生成:与其他方法对比

作者设计了消融实验来验证模型设计的有效性。如表3所示,w/o属性(property)、w/o空间(spatial)和w/o映射(mapping)是指在多任务预训练中去除实验属性预测、空间结构预测和分子映射相关性;w/o对话(conversation)是指对话历史中分子的去除;w/o增强(augmentation)是指去除双重增强训练;w/o提示(prompting)是指删除从数据库获得的SMILES提示。ChatMol的所有非完整版本在这两个任务上的表现都更差,这证明了我们的方法的有效性。特别是各个部件都去除后(w/o all,即使用基础的预训练语言模型)得分显著降低,表明桥接多用途子域的能力对于完成会话分子设计至关重要。w/o对话版本证明了迭代修改形式比直接提供整段文本需求更合理。

表3 消融实验

作者还进行了案例分析。如图2所示,输入文本描述,模型给出了对应的回答描述。可见,ChatMol提供了更高质量的分子描述输出,还掌握了一些关键的必需子结构,生成了非常相似的分子,同时提供了比基线模型更简洁的描述。

图2 案例分析

在本文中,作者提出了对话式分子设计模型ChatMol,这是一种利用自然语言描述和编辑目标分子的创新交互范式。作者在本研究中探索两个特定的任务:分子理解和分子生成。为了支持这些任务,作者开发了为会话交互量身定制的数据集ChEBI-dia。ChatMol是一个知识生成模型,有效地连接了分子的化学和自然语言描述,通过整合分子知识和促进不同语言表示之间的交互,提高了准确率和效率,显著降低了训练成本,优于现有方法。这种方法预示着人工智能辅助分子设计的一个有希望的新方向。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值