对AI大模型应用场景的深入思考(下篇)

前言

在本篇文章中,将介绍AI大模型在零售、工业、医疗/医药、金融等行业的特定应用场景。

1. 工业

1.1 设备维护

在制造业领域,专业的设备往往都需要专业的维修人员进行维护和检修,通常都由设备的品牌方或者专业的第三方维修公司进行维护。在大型楼宇、工厂等场所中,都需要依靠大型电气设备的运转,这类电气设备的产品手册可能少则几百页,多则上千页。当出现设备故障时,品牌方派遣的专业人员可能需要查询很久产品手册才能定位问题所在。

可以利用AI Agent和RAG技术,将产品文档和维修手册构建为知识图谱,在设备现场通过对话方式,帮助维修人员更快速地定位问题,找到解决方案。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

1.2 预测性维护

在设备维护场景中,往往都是设备已经出现了故障,或者传感器数据异常,此时已经对现场造成了不良影响,比如产线停工、楼宇温度和通风异常等等。而预测性维护,则是通过分析设备传感器的各项数据指标,例如温度、震动、电压、电流等因子,通过深度学习和行业小模型等技术手段,提前发现并干预设备潜在故障,实现对工业设备的实时监控、故障预测和健康状态评估,从而降低设备故障率,提高生产效率,减少损失。

场景价值:⭐️⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

1.3 生产线流程优化

生产线流程是一个标准的workflow,workflow的每个环节都有明确的步骤、检查事项和执行动作。在这个过程中,可以利用Agentic Workfow,明确告知Agent要做的事项,将更多过去需要由人工重复执行的过程,交给AI Agent,从而提升生产效率。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

1.4 智能排产

通过综合考虑订单情况、库存状况以及设备性能等因素,智能生成高效的生产计划与排程,从而提升生产效率,减少库存,优化资金使用。在智能排产的场景中,还需要以运筹学算法进行配合,将运筹学作为被AI Agent调用的一个工具。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️

1.5 产品设计与开发

AI Agent 可以协助设计师和工程师进行产品设计,比如设计师输入设计和尺寸的要求,AI Agent直接进行线稿设计;或者设计师提供线稿设计后,AI Agent输出渲染效果图,向设计师提供多种设计创意,从而缩短产品开发的周期。

但是在产品设计与开发领域,AI相对擅长做的还是外观设计,如果要辅助进行设备工艺设计或优化,现在的AI还无法实现。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️

1.6 设备控制

在工业领域,设备控制主要通过PLC技术来实现,PLC是一种针对设备的编码方式。现在,AI辅助代码编程已经非常成熟,比如Github Copilot、Cursor。放在工业领域也类似,我们也可以通过AI辅助生成PLC语句。这个场景的难点在于,消费端的代码大家都可以从各种网站上轻易获取,从而进行大模型的训练,但是PLC的代码基本上集中在制造业的几家巨头手里,比如西门子、施耐德、通用电气。因此,这个事情也只有这几家制造业头部企业能做。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️

2. 医药

2.1 疾病预测和预防

通过历史积累的患者健康数据,比如血糖、血氧、白细胞、红细胞等大量指标数据,AI Agent可以学习到各项指标与疾病之间的相关性,对于像糖尿病、心脏病等疾病,提前预测病人患此类疾病的风险。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

2.2 医学法规/知识库查询

为临床试验部门训练知识库查询助手,辅助医疗顾问在与研究机构沟通的过程中,对于流程规范、注意事项等手册进行快速检索,从对海量的文档进行翻阅的方式,优化为只需要向机器人提出问题,大幅提升工作效率

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

2.3 药物研发

和疾病预测类似,AI Agent可以分析既有药物中的各种化学和生物成分,结合每种药物的药效,从而预测新的化学和成分组合之后的药性,加速新药的发掘和开发,大幅降低研发成本和时间。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️

2.4 智能问诊服务

在LLM大模型基础上,通过RAG技术挂载医疗知识库,将AI Agent训练成为医疗领域专才,为患者提供7*24小时的在线医疗咨询服务,根据患者的问题描述,还能提供初步的诊断建议。这样既可以提升患者的就医体验,也能减轻医生的工作负担。

场景价值:⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

3. 金融

3.1 智能投顾

利用AI Agent打造智能投资顾问,帮助证券公司进行智能量化(另类因子挖掘、市场情绪预测、复杂价值链分析)、知识库问答(帮助投顾处理每天海量的市场信息)、选股建议(向客户提供投资建议,分析客户信息和数据)。目前智能投顾已经是AI在金融行业发展较为成熟的领域。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

3.2 智能投研

利用AI Agent打造智能投资研究助理,帮助市场研究员快速搜索和整理市场最新资讯,挖掘目标行业或企业的关键信息,并自动撰写市场调研报告。还可以帮助研究员记录和总结企业路演信息,生成企业研究报告。目前很多银行和证券公司也都在进行智能投研产品的研发。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

3.3 保险展业

购买保险产品时需要录入的客户个人信息非常之多,展业系统往往操作起来非常的复杂,成为客户投保过程中体验最差的一个环节。而通过AI Agent,可以根据客户的信息,自动引导完成保险展业,提升保险专员工作效率的同时,也能提升用户体验。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

3.4 保代培训

传统保险代理员的培训方法难以提供足够的讲师,且无法满足众多学员双向交流的需求,导致培训效果不佳、培训时间较长以及培训成本过高。而通过大模型技术,可以根据保险公司培训文档自动生成知识库,并且根据每个学员的阶段和表现,自动生成学习计划,从而帮助保险公司提升保险代理人培训的培训效率。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

3.5 量化分析

在金融量化交易的世界里,因子挖掘和策略优化一直是高效决策的核心。而随着大数据和人工智能技术的快速发展,传统的手动研发方法已无法满足当前市场的复杂需求。

经过训练后的AI Agent可以完成因子的自动提取与生成,同时在因子回测与验证环节加速策略优化。此外,还能从研究报告、市场数据中挖掘潜在因子,实现因子库的持续扩展,从而提升策略研发的深度。

场景价值:⭐️⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️

4. 零售

4.1 智慧门店

基于门店历史销量数据,进行门店和品类的未来销量预测;根据历史需求数据和供给数据,为门店计算每个品类的安全库存,并监控当前库存水平,给出预警,通知门店报货Agent进行补货;根据库存监控Agent的输入信息,向企业总部发起报货请求。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️

4.2 数字人直播

通过AI Agent赋能数字人,作为数字人背后的大脑,替代真人主播。由于AI Agent能够很好地结合产品、营销等专有知识库,因此可以支持数字人更顺畅地和消费者进行实时互动,提升直播转化率。

场景价值:⭐️⭐️⭐️⭐️

场景可行性:⭐️⭐️⭐️⭐️

总结

在本篇文章中,介绍了AI大模型在工业、医药、金融和零售这四大行业下的特定应用场景。

无论是行业通用场景,还是行业特定场景,我们都可以按照场景价值和场景可行性两个维度进行评估。站在企业的角度,可以优先探索价值高、可行性高的场景,逐渐完成AI对企业更多业务环节的覆盖。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值