4月26日,清华大学宣布成立人工智能医院。
这是继清华成立教育学院后的又一大重磅举措。
近期的动作,清华既布局未来,又不忘强国责任和人才培养,特别是面向人工智能时代人才培养的迫切使命。
清华此次成立人工智能学院,据官方信息,是构建“AI+医疗+教育+科研”生态闭环,促进优质医疗资源的高效扩容与均衡布局,致力于让更多人享有可负担、可持续的高质量医疗服务。
未来医院还将作为清华医学教育的重要场景和医学人才培养的重要平台,培育新一代“AI协同型医生”。
通俗地讲,即跨学科融合,关切医疗领域民生,并且提供AI医学与人类医生如何共处的答案!
2024年11月,清华团队研发的“紫荆AI医生”内测系统上线,基于“闭环式”医疗虚拟世界实现AI医生加速。
据清华消息,上述“紫荆AI医生”中,“闭环式”是指智能体医院覆盖了发病、分诊、问诊、检查、诊断、治疗、取药、康复的完整流程;
加速进化则指智能体医院是一个时间加速器,虚拟世界内的时间流逝速度是真实世界的约100倍,AI医生可以在真实世界的较短时间内,完成虚拟世界中的漫长进化。
目前,共有42位来自不同科室的AI医生正式亮相该诊断系统,覆盖21个科室的300多种疾病。
对每种疾病,“紫荆AI医生”系统都依据最新的权威医学教材、学术期刊和诊疗指南进行精准的分类诊断和治疗,充分发挥AI擅长在短时间内“阅读”和“理解”海量医学文献的优点提供诊疗方案。
当前研究团队正在进行“紫荆AI医生”全套能力系统的建设,包括问诊、开具检查单、提供诊断建议、推荐治疗方案、随访环节的咨询问答等功能,预计全新升级的系统将于今年上半年在试点医院推行,并向社会公众开放使用。
而对于公众普遍关注的AI医生与人类医生的关系问题,清华团队也给出了思考,AI医生与人类医生是协同工作的关系:在供给端,AI医生会成为人类医生的助手,帮助人类医生减少工作负荷、提高工作效率;在需求端,AI医生将提升诊疗质量、降低误诊率,为公众提供低廉、便捷和优质的医疗服务。
AI未来的全面应用落地是顶尖大学乃至顶尖科技大厂最关注的领域之一。
也几乎可以说是分水岭级重要性。
事实上,清华探究的正是世界科技和资本关注的AI赋能医疗的前沿。
而2个月前,据IT桔子的统计,Alphabet(谷歌)作为互联网时代的科技巨头之一,10年来也是巨额投资AI。
Alphabet(谷歌)在人工智能领域的投资中,应用层占据绝对主导,超一半(53%)的投资事件集中于 AI 应用层,体现了对技术商业化落地的重视。
应用层中以行业应用层为主,涵盖医疗、企业服务、金融、法律等多行业的 AI 解决方案。而且AI+医疗占据最突出部分:
从图中可以看到,谷歌对医疗领域的 AI 行业应用投资共 22 起,涉及 13 家公司,主要集中在三大场景,分别是临床决策支持(如医学影像协调工具 Viz、心血管 AI 诊断 Ultromics),流程自动化(如理赔管理 AI Olive、电话流程自动化工具 INfinitus),健康管理(如血糖分析 Signos、帮助神经多样性支持产品 Spectrums AI)。
谷歌对 AI 精准医疗公司 Owkin、基于 AI 的医学影像协调工具 Viz、AI 自动化放射学报告编写公司 Rad AI 各出手 3 次。
单次投资金额最高的是美国医疗对话 AI 服务商 Abridge,今年 2 月份由 CapitalG 投资 25000 万美元。
看到这个,你们是否更深刻理解清华布局人工智能医院的举措?
理工医融合交叉,推动医疗模式的颠覆式变革,推动面向未来人才培养,关切民生和AI造福的应用,或许这才是清华的担当和未来!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。