赶在deepseek-r2之前,阿里发布全球最强开源模型Qwen3,4张H20即可部署满血版

最近几天,开源大模型是异常活跃。

从前几天有爆料deepseek-r2即将发布的消息:

null

到昨天Qwen3短暂发布又撤回:

null

再到今天Qwen3正式发布。

感觉就像一场军备竞赛,阿里这次终于抢在了deepseek-r2发布之前发布了Qwen3!接下来的压力给到了DeepSeek,毕竟万一后发者在各方面没能超越对方的话,这一版本的努力影响力就要小很多了。

言归正传,一起看看这次阿里发布的最新开源大模型:Qwen3 的超强表现

Qwen3 概览

null

Qwen3是阿里推出的Qwen系列最新一代大型语言模型,是国内首个“混合推理模型”。“混合推理”相当于把顶尖的推理模型和非推理模型集成到同一个模型里去,需要极其精细、创新的设计及训练。目前除了Qwen3之外,只有Claude3.7和Gemini 2.5 Flash可以做到。

性能炸裂

Qwen3旗舰模型Qwen3-235B-A22B在编码、数学、通用能力等基准评估中,与DeepSeek-R1、o1、o3-mini、Grok-3和Gemini-2.5-Pro等顶级模型相比,表现出色。

null

此外,小型MoE模型Qwen3-30B-A3B以10倍激活参数超越QwQ-32B,甚至像Qwen3-4B这样的微型模型也能媲美千问2.5-72B-Instruct的性能。

null

关键能力

  • 单一模型内无缝切换思维模式:思考模式(适用于复杂逻辑推理、数学和编码)和非思考模式(适用于高效的通用对话),确保在各种场景下实现最佳性能。
  • 多语言支持:覆盖119种语言和方言,具备强大的多语言指令遵循和翻译能力。
  • 代理能力增强:支持MCP协议和自定义工具集成,强化了在思考和非思考模式下与外部工具的写作能力
  • 极致成本控制:满血版仅需4张H20即可部署
  • 上下文长度支持扩展至128K

快速上手

目前 Qwen3 已上架 ollamaopenrouter ,大家可以快速接入体验:

ollama

openrouter

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 如何通过 Ollama 进行 DeepSeek-R1-Distill-Qwen-1.5B 模型的离线部署 为了成功完成 DeepSeek-R1-Distill-Qwen-1.5B 的离线部署,需遵循特定流程并满足相应环境需求。此部分介绍具体操作指南。 #### 准备工作 确保目标机器具备足够的计算资源来支持模型运行。对于较小规模的蒸馏本如 Qwen-1.5B,虽然不需要像满血那样高的硬件配置,但仍建议至少配备一块高性能 GPU 和充足的 RAM 来保障流畅执行[^3]。 #### 安装依赖包 安装必要的 Python 库和其他工具链之前,先设置虚拟环境以隔离项目依赖关系: ```bash python -m venv myenv source myenv/bin/activate # Linux/MacOS 或者 `myenv\Scripts\activate` Windows下 pip install --upgrade pip setuptools wheel torch transformers accelerate bitsandbytes safetensors ``` #### 下载预训练权重文件 由于网络访问受限,在开始前应提前下载好所需的预训练参数文件,并将其放置于指定目录内以便后续加载使用。可以从官方仓库或其他可信渠道获取这些二进制数据集。 #### 加载与初始化模型实例 利用 Hugging Face Transformers 库简化加载过程,下面给出一段简单的代码片段用于创建模型对象: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "path/to/local/model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, device_map="auto", # 自动分配到可用设备上 load_in_8bit=True # 使用 int8 推理优化 ) ``` #### 测试推理功能 最后一步是验证整个系统的正常运作情况,可以通过输入一些样本文本来观察输出效果: ```python input_text = "Once upon a time..." inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 以上即为基于 Ollama 平台实现 DeepSeek-R1 蒸馏变体之一 Qwen-1.5B 本离线部署的大致步骤概述[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值