刷新多模态医学图像报告生成新高度|AAAI 2023 山东大学&齐鲁医院推出多模态记忆Transformer!

MMTN: Multi-Modal Memory Transformer Network for Image-Report Consistent Medical Report Generation

论文链接:

https://arxiv.org/pdf/2303.13818

代码链接:

https://github.com/xiongyiheng/Prior-RadGraphFormer

简介

基于 Transformer 的编码器-解码器架构来生成医学图像报告。提出了一种多模态记忆transformer网络(MMTN)来处理多模态医疗数据,以生成图像报告一致的医疗报告。一方面,MMTN 通过设计独特的编码器来关联和记忆医学图像和医学术语之间的关系,减少图像报告不一致的发生。另一方面,MMTN利用医学视觉和语言的跨模态互补性进行单词预测,进一步提高了生成医学报告的准确性。对三个真实数据集的广泛实验表明,MMTN 在自动指标和人工评估方面均比最先进的方法取得了显着的效果。

研究背景

现有的用于医学图像报告生成的transformer模型可以为医学图像生成文本叙述,但在充分利用医学多模态数据中的信息方面仍然受到限制,例如医学图像和报告之间的一致映射以及重要医学术语知识的利用,如图1所示.

图1:胃肠病学报告示例,其中对齐的图像和报告用不同颜色标记,医学术语知识用红色下划线表示。

已有工作的局限性可以归纳为以下几点:

(1)多模态医疗数据之间的关系尚未得到充分探索。

(2)生成的报告在精度和一致性方面都存在缺陷。大多数方法直接对齐图像视觉特征并报告语言特征以生成报告。图像和文本之间注释对应关系的限制导致这些方法生成的句子不准确和不一致。另外,医疗报告中一些重要的医学术语无法有效生成。

方法

图 2: MMTN 架构概述。

如图2所示,多模态记忆Transformer网络由三个核心模块组成,即MMTN编码器、MMTN解码器和多模态融合层。MMTN编码器负责将输入图像和医学术语处理为丰富的特征,旨在关联和记忆网格特征和术语特征之间的关系。 MMTN 解码器接收编码器的输出和报告的词嵌入以生成语义状态。多模态融合层通过自主学习丰富特征和语义状态的贡献来进行多模态特征的联合表示,以生成语义一致的医疗报告。

MMTN编码器

为了生成包含重要医学术语的报告,MMTN 编码器被设计为关联和记忆医学图像的视觉特征和医学术语表示之间的关系,这有助于弥合图像和报告之间的差距。 MMTN编码器由网格模块、术语BERT和内存增强模块组成。

(1)网格模块给定任何医学图像 I,网格模块被用于提取 I 的网格特征 。网格特征 通过预训练的 CNN 模型提取。具体来说,首先将图像I分为若干个等大小的区域,然后每个区域的每个网格特征是从CNN的最后一个卷积层单独提取的。随后,通过连接每个提取的网格特征来获得最终的网格特征 。网格模块可表示为:

其中()表示网格模块,Concat表示连接操作,R是区域数量。

(2)术语BERT术语BERT表示与医疗报告相关的医学术语的上下文信息,有助于提高报告的上下文相关性。 论文中建立了两个胃肠道和胸部疾病常用医学术语的语料库。术语 BERT 模块由预训练的 BERT 模型和前馈网络组成,用于从定义的术语语料库中提取术语特征。该过程可以形式化为:

(3)记忆增强模块记忆增强模块用来关联和记忆医学图像和术语之间隐藏的相关性。记忆增强模块的输入是在注意力机制下由网格特征 和术语特征 生成的联合特征。采用一组用于自注意力的键和值来记忆医学图像和术语之间的语义上下文信息。键和值被实现为两个可学习矩阵,即 和 ,可以通过 SGD 更新。记忆增强模块中的特征交互是通过缩放点积注意力来计算的。随后,多头注意力的输出被应用到前馈层。最后,通过残差连接和归一化操作层得到丰富的特征。

MMTN解码器

MMTN 解码器根据先前生成的单词和丰富的特征来生成语义状态。利用词嵌入层提取医疗报告的文本序列特征,然后将其作为MMTN解码器第一层的输入。第二层是多头注意力操作,其 K 和 V 矩阵来自 MMTN 编码器的丰富特征 。 MMTN解码器可以形式化为:

其中 和 表示解码器的中间输出, 是语义状态.

多模态融合层

多模态融合层附加到 MMTN 解码器的上层,用于融合上述模块得到的两个模态特征,即丰富特征 和语义状态 。该模块结合两种模态的特征信息来计算视觉特征和语言特征对每个生成序列的贡献。定义如下:

训练

对于每个训练样本(I,r),其中I是一组图像,r是由groundtruth序列组成的相应医学报告,报告生成的损失L通过交叉熵损失最小化:

其中 θ 是 MMTN 模型的参数,s_1:M 表示报告 r 的真实序列。

实验

MMTN 与报告生成任务的三个数据集上的基线方法进行比较,自动指标的所有性能如表 1 所示。MMTN 在三个数据集上的 BLEU-n 和 CIDEr(或 METEOR)评分优于所有基线模型,证明了 MMTN 在生成医疗报告方面的有效性和准确性。

图 3:GE(第一行)、IU-CX(中间行)和 MIMIC-CXR(最后一行)上图像文本注意力映射的可视化。左侧部分是图像及其真实报告,右侧部分是 MMTN 生成的报告以及图像区域和医学术语的映射。从蓝色到红色的颜色代表权重从低到高。

如图3所示,MMTN 能够生成与真实情况一致的报告。在 GE 样本中,生成的报告准确报告病变的位置(即升结肠)和类型(即息肉)。同样,在 IU-CX 和 MIMIC-CXR 样本中,MMTN 也准确地描述了大多数类型的病变,例如混浊、空洞病变和过度膨胀。此外,MMTN还生成正常区域的描述,例如“粘膜光滑”、“无胸腔积液”和“无局灶性实变”。正常的描述生成有助于报告的连贯性和完整性。值得注意的是,MMTN生成的报告几乎涵盖了所有常见的医学术语。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值