Background
多发性硬化(Multiple Sclerosis,MS)是一种中枢神经系统的慢性炎症性疾病,其临床过程高度变异。复发-缓解型多发性硬化(Relapsing-Remitting Multiple Sclerosis,RRMS)是最常见的类型,特点为神经功能恶化的发作(复发),继而进入部分或完全恢复(缓解)的阶段。这些波动给疾病管理带来了极大挑战。预测工具能够为治疗决策提供指导。指南示例讲解了RRMS预测模型的开发过程,并简要介绍了各个步骤。详细分析和结果另行提供。
Step-by-Step Model Development
step-by-step 预测模型开发流程
步骤 1:明确目标、组建团队、文献回顾与研究方案制定
-
目标:预测RRMS患者在两年内复发的可能性,以支持治疗决策。
-
如果复发风险高,患者可考虑强化治疗,如使用更积极的疾病修正药物(尽管可能增加不良事件风险),或干细胞移植。
-
团队构建:一个多学科团队成立,成员包括:
-
临床医生
-
患者
-
流行病学家
-
统计学家
-
文献回顾:识别RRMS复发的潜在预测因素并指出现有模型的局限性:
-
缺乏内部验证
-
未妥善处理缺失数据
-
未评估临床效用
这些缺陷限制了现有模型在临床应用中的可靠性和适用性。
步骤 2:选择新模型还是更新现有模型
文献回顾后,研究者决定开发新模型而非更新已有模型。
步骤 3:定义结局指标
- 定义在两年内至少复发一次作为RRMS患者的结果指标。
步骤 4:识别候选预测变量与方法
根据文献回顾和专家意见,选择以下预测因子:
-
年龄
-
扩展残疾状态量表(EDSS)评分
-
既往的多发性硬化治疗
-
距离上次复发的时间(月数)
-
性别
-
疾病持续时间
-
既往复发次数
-
钆增强病灶数量
这些因子旨在确保包含相关性高且临床易于测量的预测变量。
步骤 5:数据来源与样本量
-
数据来自瑞士多发性硬化队列研究,该研究为前瞻性队列,密切监测RRMS患者。
-
935名患者
-
1752次观测
-
302次复发事件
-
数据包括:
步骤 6:样本量计算与过拟合问题
- 样本量计算表明至少需要2082名患者的数据。然而,现有样本量不足,这可能导致过拟合问题。
步骤 7:缺失数据处理
采用多重插补处理缺失协变量数据。研究者预计模型在实际使用中不会遇到数据缺失问题。
步骤 8:拟合预测模型
采用了贝叶斯逻辑混合效应预测模型,该模型能够考虑患者的多次观测。通过拉普拉斯先验分布对回归系数进行惩罚,以解决过拟合问题。
步骤 9 和 10:评估模型性能与选择最终模型
-
校准:使用校准图检查模型性能。
-
区分能力:通过**ROC曲线下的面积(AUC)**评估。
-
自助验证:为每个插补数据集创建500个自助样本,以校正乐观偏差。
-
校正后的校准斜率:0.91
-
校正后的AUC:0.65
-
该结果表明模型的区分能力低到中等,但与现有RRMS模型相比具有优势。
模型性能评估
步骤 11:决策曲线分析
-
进行了决策曲线分析以评估模型的临床效用。
-
分析表明,在15%-30%的阈值之间,基于模型的治疗决策比单纯策略(如不治疗或全体治疗)更优。
-
只有当避免复发的价值被评估为高于强化治疗风险和不便的3.3-6.6倍时,该模型才能提供明确的指导意义。
步骤 12:评估个体预测变量的预测能力(可选)
-
在纳入的预测因子中,以下因素与未来两年内复发的更高概率相关:
-
年轻
-
较高的EDSS评分
-
距离上次复发时间较短
-
然而,这些预测因子均为不可控变量。
步骤 13:模型的实施与代码共享
-
模型已在R-shiny的一个免费网页应用中实现。
-
患者、医生和决策者可以使用该工具估算未来两年内复发的概率。
-
访问链接:https://cinema.ispm.unibe.ch/shinies/rrms/
R-shiny 应用展示
-
为确保可重复性,所有代码已公开:
-
GitHub链接:https://github.com/htx-r/Reproduce-results-from-papers/tree/master/PrognosticModelRRMS
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。