Gitee AI+Dify 双剑合璧,打造另类 RAG 知识库

从红薯喊我来折腾 AI 至今已经四个月了,很感激 Gitee AI 团队在这个过程中给与的支持与帮助,也是基于 Gitee AI 团队给我的强大信心,我们联合兄弟单位申报的国家卫健委《2024年医学工程科研项目》顺利通过审批,拿到了立项通知书。

我们的项目是一个围绕医疗设备和医用耗材开展 AI 使用探索的一个应用,涉及到 AI 方面的业务流程,主要就是需要利用 RAG+LLM 的功能,给临床提供指定型号的设备或耗材的精准指导。为此,我们选择了 Dify 做为我们的 LLM 应用开发平台。

Dify 是一款开源的大语言模型(LLM)应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念,使开发者可以快速搭建生产级的生成式 AI 应用。该平台提供了非常便捷和强大的流程编排能力,节省了我们很多工作研发开发工作。但当我们真正投入具体的业务研发中时,发现 Dify 的 RAG 体系,并不能满足实际需要,即便是它已经在最新版本中开放了 API 调用外部 RAG 的功能。

业务需求分析

在临床工作中,我们会有 L 个产品种类,每个产品种类下可能会有 M 个企业,每个企业又会有 N 个产品型号,不同的型号功能不同。在 Dify 现有的知识库体系下,我只能进行大分类的知识库归类,例如监护仪下就是所有品牌的监护仪,呼吸机下就是所有品牌的呼吸机。

这就造成了两个很严重的后果,一是搜索 A 品牌的机器却召回了 B 品牌的说明;二是搜索同品牌下 A 型号的内容却召回了 B 型号的。如此张冠李戴,显然是不符合医疗工作在精准度方面的要求。因此,我们需要针对具体型号的产品做精准内容的召回

业务功能实现

Dify 的外部 RAG 并非良配

从业务流程上看,我们只需要输入关键词,输出召回内容即可。但细细分析,其实是经过输入关键词→特征提取→向量召回→重排→LLM处理这样的一系列操作。这里必须要给Dify一个大点赞,内置的流程编排器真的是很方便,模型服务提供商也非常全面,但在 RAG 上能力还是会稍微弱了一些。外部知识库的 API 结构和流程,看起来很不错,真正用起来实为鸡肋。

解锁新的 RAG 召回姿势

为了实现每次搜索只在限定范围内进行 RAG,经过研究,向量数据库选用 Zilliz(其实和 Milvus 大差不差,只是我懒得折腾服务器搭建)。Zilliz提供了 RESTful API,可以直接通过 API 来进行召回,Gitee AI 提供 Embedding 服务,而 Dify 有一个 HTTP 调用的节点。于是乎,一个完美的工作流就出来了:

通过 Http 节点,首先调用 Gitee AI 的特征抽取服务,获得的结果丢给 Zilliz 召回指定区块的内容。如此即可不做认可多余开发,就实现个性化的知识召回。

召回质量测试

我们根据临床常见的问题,准备了100个知识库相关的问题进行测试,最终得到的结果如下:

显而易见,通过自定义编排的向量召回流程,我们可以通过极低的实施成本,就可以得到非常高精度的召回质量。

为什么是Gitee AI

不可否认,选择 Gitee AI 是多少掺杂了一些兄弟感情在里面的,但从长远来看,成本、服务、可靠性都是必须要考虑的因素,毕竟做的可都是单位的事儿。也试过了 Dify 提供的各类模型服务平台,但我认为最省心的还是 Gitee AI。

可能有人会说 Gitee AI 的模型数量不多,但我想和各位基友说一句,服务稳定可靠比数量多更重要。 Gitee AI 没有莫名其妙的风控和莫名其妙的限流,这一点很给力。而且,你要的姿势这里都有(LLM、TEXT EMBEDDING、RERANK、SPEECH2TEXT、TTS)。

关于服务,还需要特别表扬一下 Gitee AI 团队的鼎力支持,当我将这一想法告知 Gitee AI 的开发人员后,我建议他们开发了一个 Dify 工具,可以方便我们用工具来调取 Gitee AI 的服务,经过几天的准备,这些哥弟真的做出来了。

而这个工具已经更新到了 Dify 最新版本中,欢迎各位看官使用体验。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值