摘要
这篇论文介绍了一种名为SciAgents的多智能体系统,旨在通过大规模本体知识图谱、大型语言模型(LLMs)和数据检索工具以及具有就地学习能力的多智能体系统来自动化科学发现。
[2409.05556] SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
https://arxiv.org/abs/2409.05556
核心速览
研究背景
-
研究问题:这篇文章要解决的问题是如何通过人工智能技术自动化科学发现过程,特别是在生物学启发材料领域。具体来说,研究如何利用大规模本体知识图谱、大型语言模型(LLMs)和多智能体系统来揭示跨学科关系,生成和优化研究假设。
-
研究难点:该问题的研究难点包括:如何有效地整合和利用大规模数据集;如何提高LLMs在特定领域的专业知识和推理能力;如何通过多智能体系统实现复杂任务的协同处理。
-
相关工作:该问题的研究相关工作包括:利用LLMs进行文本生成和假设提出的研究;构建和利用知识图谱进行信息检索和推理的研究;以及多智能体系统在复杂任务中的应用研究。
研究方法
这篇论文提出了SciAgents框架,用于解决科学发现过程中的自动化问题。具体来说,
-
大规模本体知识图谱:首先,构建了一个包含33,159个节点和48,753条边的知识图谱,涵盖了生物启发材料和力学领域的概念。该知识图谱是通过分析约1,000篇科学论文生成的。
-
路径生成:使用启发式路径查找算法,结合节点嵌入和随机路径点,从知识图谱中生成连接两个关键节点的路径。该算法引入了随机因子以探索更多样化的路径。
-
深度分析:利用LLMs驱动的本体论代理,对路径上的概念和关系进行深入分析,生成动态知识。
-
研究假设生成:科学家代理基于知识图谱和本体论代理的分析,生成初步的研究假设。假设生成过程中,代理需要综合考虑七个关键方面:假设、结果、机制、设计原则、意外属性、比较和新颖性。
-
假设扩展和评估:通过多个专业代理(如科学家1、科学家2和评论家代理)分别扩展和评估假设的不同方面。评论家代理负责对整个研究提案进行总结、批评和改进,并提出最有影响力的科学问题。
实验设计
-
数据收集:从约1,000篇科学论文中提取知识,构建了一个包含33,159个节点和48,753条边的知识图谱。
-
实验设计:设计了两种多智能体系统策略:预编程交互策略和全自动框架策略。预编程策略中,智能体之间的交互是预先定义的;全自动策略中,智能体之间的交互是动态生成的,并允许人类用户在不同阶段进行干预。
-
样本选择:随机选择知识图谱中的节点,生成连接这些节点的路径。例如,选择“丝绸”和“能量密集型”作为起始节点。
-
参数配置:在全自动策略中,使用了Semantic Scholar API工具来评估生成假设的新颖性。
结果与分析
-
路径生成结果:生成的路径展示了从“丝绸”到“能量密集型”概念之间的多样化路径,增强了路径的多样性和深度。
-
深度分析结果:本体论代理对路径上的概念和关系进行了深入分析,生成了丰富的洞察力和新的研究思路。
-
研究假设生成结果:科学家代理生成了一个基于知识图谱和研究假设的详细研究提案。例如,提出的假设涉及将丝绸与蒲公英基颜料结合,以创建具有增强机械性能和光学性能的生物材料。
-
假设扩展和评估结果:评论家代理对研究提案进行了详细的总结和批评,提出了改进建议。全自动策略中生成的假设在新颖性和可行性方面得分较高,表明其生成的假设具有较高的创新性和实用性。
总体结论
这篇论文提出了一种基于LLMs和多智能体系统的自动化科学发现框架SciAgents。通过构建大规模本体知识图谱,结合路径生成、深度分析和多智能体协作,实现了研究假设的自动生成和优化。实验结果表明,该框架能够生成具有高新颖性和可行性的研究假设,为科学发现提供了新的途径。未来的工作可以进一步探索自动化实验和多智能体系统的集成,以加速材料科学的发现和应用。
论文评价
优点与创新
-
创新的多学科集成:将仿生材料的层状结构与微流控技术结合,利用仿生材料的自然优势来提高微流控芯片的性能。
-
全面的机制分析:提供了详细的热传递、机械稳定性和生物相容性机制,并通过定量目标和实验方法支持。
-
生物医学应用的潜力:重点放在生物相容性和长期使用上,与当前的研究趋势高度一致。
-
探索意外属性:考虑了自愈特性和自适应热传递,增加了研究的深度和广度。
-
新颖性:整合仿生材料、增强性能和潜在的新生物医学应用具有高度创新性。
不足与反思
-
复杂的制造过程:使用软光刻技术创建复杂的层状结构可能在可重复性和可扩展性方面带来挑战。
-
有限的初步数据:提案缺乏初步数据来支持实现所提出的热传递和机械稳定性改进的可行性。
-
潜在的生物相容性问题:尽管提案强调了生物相容性,但并未涉及长期植入和与生物组织相互作用可能带来的问题。
关键问题及回答
问题1:SciAgents系统在生成研究假设时采用了哪些主要策略?这些策略各自的特点是什么?
SciAgents系统在生成研究假设时采用了两种主要策略:
-
预编程的AI-AI交互策略:在这种策略中,系统中的各个AI代理之间的交互是预先编程的,并且遵循一个预定的任务序列。这种方法的优点在于它确保了假设生成的连贯性和可靠性,但缺点是缺乏灵活性,无法动态响应研究过程中不断变化的环境。
-
全自动框架策略:这种策略允许AI代理之间的交互完全自动化,没有预定的顺序。系统中的代理可以根据当前的研究上下文动态地调整其行为。此外,这种策略还支持人类在研究开发的各个阶段进行干预,提供专家反馈、改进假设或指定某些材料、类型或特征。这种方法的优点是灵活性和适应性,能够动态响应研究过程中的变化,但缺点是需要更复杂的协调和管理机制。
问题2:SciAgents系统在生成研究假设的过程中使用了哪些具体工具和技术?这些工具和技术如何协同工作?
SciAgents系统在生成研究假设的过程中使用了以下具体工具和技术:
-
知识图谱:系统使用了一个包含33,159个节点和48,753条边的知识图谱,该图谱是从大约1,000篇科学论文中生成的。知识图谱为系统提供了一个结构化的知识库,帮助代理理解和探索不同概念之间的关系。
-
路径生成算法:系统采用了一种启发式路径查找算法,结合节点嵌入和随机路径点,以在知识图谱中发现多样化的路径。这种算法不仅用于生成初始路径,还可以通过随机化路径点来扩展路径,从而增强探索的广度。
-
LLM代理:系统利用了GPT系列大型语言模型(如GPT-4)来执行各种任务,包括生成新的想法和假设。LLM代理通过与知识图谱的结合,能够生成详细且具有创新性的研究提案。
-
自动多代理建模:系统在AutoGen框架内实现了自动多代理协作,每个代理都被分配了特定的角色,并通过自然语言生成技术来完成任务。例如,“Planner”代理制定详细计划,“Ontologist”代理定义术语和关系,“Scientist”代理生成初步研究提案等。
-
语义学者API:系统集成了一个名为“Novelty Assistant”的AI代理,该代理使用语义学者API来评估生成的研究假设的新颖性。通过调用API,系统可以检查假设是否与现有文献重复,并提供相应的反馈。
这些工具和技术协同工作,通过多代理协作和自然语言生成技术,系统地生成、精炼和评估研究假设,从而实现自动化科学发现。
问题3:SciAgents系统在生成研究假设的过程中如何进行假设的评估和改进?
SciAgents系统在生成研究假设的过程中采用了多层次的评估和改进机制:
-
初步假设生成:首先,系统利用LLM代理和知识图谱生成初步的研究假设。这个假设通常包括假设、预期结果、机制、设计原则、意外属性、比较和新颖性等方面。
-
详细展开:接下来,系统中的各个专门代理(如“hypothesisagent”、“outcomeagent”、“mechanismagent”等)分别负责扩展假设的不同方面。例如,“hypothesisagent”生成详细的假设,“outcomeagent”描述预期结果,“mechanismagent”解释预期机制等。
-
批判性审查:然后,系统中的“critic”代理对整个提案进行总结、批判并提出改进建议。批判性审查包括对假设的科学性、逻辑性和可行性的全面评估。
-
优先级建模:系统还引入了优先级建模,特别是针对分子建模和合成生物学实验。通过提示驱动的方法,系统识别出最有影响力的科学问题,并概述进行这些研究所需的关键步骤。
-
新颖性评估:最后,系统使用语义学者API对假设的新颖性进行评估。API返回的结果帮助系统进一步细化和改进假设,确保其独特性和创新性。
通过这些步骤,SciAgents系统能够系统地生成、精炼和改进研究假设,确保其科学性和创新性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。