掌握Claude的写作能力,如何帮你选择引爆学术界的论文题目指南。
今天来分享一个非常专业的话题,就是如何利用Claude来选择那些能引爆学术界讨论的论文题目。
关于如何用Claude挑选引爆学术界的论文题目,阿九总结出了一个3+2模型,即3个筛选维度和2个加分项。
这个模型是阿九为近50位博士生提供论文指导后,验证出来的。
以后和学术圈的朋友分享时,就可以用这个3+2模型,既实用又高效。
三个筛选维度是什么?
第一:让Claude对比该领域top期刊近3年的热门论文标题。
第二:让Claude分析该领域未来研究趋势和空白点。
第三:让Claude评估题目的创新性和争议度。
说到让Claude对比top期刊的热门论文标题,阿九忍不住想起上周指导的一位物理学博士生的经历。
他让Claude分析了Nature和Science近3年的高引论文,发现一个有趣的现象:那些标题中包含paradigmshift、breakthrough、revolution等词汇的论文,往往更容易引发学界热议。
这让阿九想到,我们完全可以让Claude建立一个高引论文标题词库,通过分析这些高频词背后的共性,来打造自己的论文题目。
说实话这个方法太实用了,为此专门给核心会员准备了一份基于Claude建立的各个学科顶刊论文标题高频词库,已经帮助很多博士生快速定位到优质论文题目。
其次是让Claude分析领域的研究趋势和空白点。
这一点特别重要,因为一个好的论文题目应该既符合当前研究热点,又能填补领域空白。
阿九记得有一次指导化学专业的学生,我们让Claude分析了近5年化学领域的研究方向演变。
Claude不仅列出了研究热点的变迁路径,还预测了未来可能出现的研究空白。
这个学生最终选择的题目正是瞄准了一个Claude预测的潜在突破点,论文发表后引起了不小的反响。
第三个维度是评估题目的创新性和争议度。
很多人不知道,Claude其实可以充当一个学术辩手。
我们可以让它从不同学派、不同理论视角来挑战我们的选题,看看这个题目能激发多少有价值的学术争议。
有趣的是,阿九发现让Claude分别扮演不同流派的学者来审视题目特别有效。
它能模拟出保守派、改革派、跨学科派等不同立场的专家意见,帮我们全方位评估题目的争议潜力。
最后来说说两个加分项。
第一个加分项是让Claude进行跨学科联想。
阿九注意到那些能在学术界引起轰动的论文,往往都有跨学科的新颖视角。
比如把生物学的研究方法用到经济学研究中,这种创新往往特别吸引人。
阿九前两天刚帮一位社会学博士做选题指导,我们让Claude在心理学、经济学和社会学三个领域之间寻找关联点。
最后选定的题目融合了行为经济学的实验方法,成功吸引了多个领域学者的关注。
第二个加分项是让Claude评估题目的社会影响力。
学术研究不是空中楼阁,如果能选择既有学术价值又与现实社会紧密相关的题目,更容易引发广泛讨论。
说到这里阿九忍不住想分享一个案例。
有位环境科学的博士生,原本想研究一个很纯理论的课题。
通过Claude的分析发现,如果把研究视角转向碳中和背景下的企业环保创新这个方向,不仅学术价值很高,还能引起产业界的关注。
现在他的论文不仅发在了顶刊上,还被多家媒体报道。
好了说到这里阿九突然想起一个非常实用的技巧,让Claude帮你设计标题矩阵。
具体做法是让它先列出10个可能的题目方向,然后对每个方向设计3-4个不同的表达方式。
这样你就能获得30-40个候选题目,然后再用前面说的3+2模型去筛选,效率特别高。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。