最近国产大模型DeepSeek特别火,以至于频繁出现反应迟缓甚至宕机的情况,和两年多之前ChatGPT的遭遇颇为相似。
万幸,DeepSeek是一个开源模型,我们大可以通过本地部署,在自己的终端上随时使用!接下来就教大家具体的操作:
一、用Ollama下载模型
首先我们需要安装Ollama,它可以在本地运行和管理大模型。
到Ollama官网 https://ollama.com,点击下载,然后选择适合自己系统的版本,这里选择Windows:
下载完成后点击安装,完成后安装窗口会自动关闭,你的系统托盘图标会出现一个常驻的Ollama标记:
接下来点击Ollama官网左上方的“Models”按钮,会列出支持的各种模型,目前最火的DeepSeek-R1排在显眼位置,点击进入主题页面:
进入这个界面后,点击下拉菜单,可以看到多个版本。我的主机是4090显卡24G显存,选择32b版本(数字越大,对显存要求越高):
选择好模型之后,点击右侧这个按钮,复制指令,这里是:ollama run deepseek-r1:32b
在Windows搜索栏输入“cmd”回车,唤出命令行窗口:
黏贴运行刚才复制的命令,开始下载,32b模型容量大约19GB,请保持网络畅通:
下载完成之后,就可以和DeepSeek对话了:
但是在命令行窗口下对话,还是太抽象,我们需要一个美观的图文交互界面。
二、安装Docker
因此要用到Docker这个容器化平台,先从官网 https://www.docker.com 下载,这里依然选择Windows版:
下载后安装,选项全默认即可:
安装完成需要重新启动Windows:
重启后需要同意Docker的条款,并注册你的账号:
三、安装Open WebUI
接下来到Open WebUI这个开源工具的代码页:
https://github.com/open-webui/open-webui
找到“If Ollama is on your computer, use this command”这一项,点击右边的按钮复制这个指令:
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
再次打开命令行窗口,黏贴刚才复制的命令,安装Open WebUI:
安装完成后,你会发现你的Docker界面里多了Open WebUI的条目。
四、在图形化界面下运行DeepSeek
还记得之前装好的Ollama吗?你需要在命令行窗口里再次执行:ollama run deepseek-r1:32b
保持命令行窗口开启,然后点击Docker桌面端的这个位置:
首次使用,会打开一个网页,点击“开始使用”:
把你之前注册的账号名字密码填进去,登录:
这里点击“确认,开始使用”:
图形界面的DeepSeek-R1,准备就绪,随时待命!
32b的反应速度很快,因为是R1模型,所以有深度思考功能:
更棒的是,还可以通过Open WebUI自带的语音功能输入,避免打字。方法是点击右边的“呼叫”按钮:
DeepSeek会同时输出文字和语音,虽然是机器人腔调,但毕竟是官方也没有的功能!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。