01.前言
春节期间,DeepSeek火遍全网,成为近期的热门话题,本人也跟风进行了产品体验,同时也在思考,如何将DeepSeek应用到我们所从事的工作中,助力医生的工作。
02.DeepSeek助力医生应用场景
AI能在许多方面帮助医生,比方诊断、治疗、随访、科研、教育等多个环节,减轻医生的工作负担,提升医疗的效率与质量。
DeepSeek作为一种现象级的AI工具,我们可以充分利用其优势,助力相关工作开展,从而减轻医生工作量,提高诊疗质量。
具体如下图所示:
1、临床工作智能助手
一、病历管理
在医生日常临床工作中,病历书写的工作量占比很高,通过DeepSeek可以帮助医生处理这方面的工作。
具体包括:
1)病历自动生成:通过预问诊病情收集或者诊间语音识别技术,将预问诊信息或者语音记录自动转化为结构化的电子病历,减少医生的工作量。
2)病历智能检索:通过关键词或语义检索,快速查找患者的历史病历、检验结果、影像资料等,来提升诊疗的效率。
3)病历质量控制:自动检查病历的完整性和规范性,提醒医生补充遗漏的信息,以确保病历质量。
二、报告自动生成
检验和检查科室的医生会有大量的报告处理工作,AI处理这类工作很擅长。
所以通过DeepSeek自动生成检验报告、影像报告、病理报告、体检报告等,减少医生工作量。
三、临床辅助诊断
根据患者的病历、检验检查、影像等数据,DeepSeek提供辅助诊断的工作。
具体包括:
1)智能诊断建议:通过现有的病情信息,提供基于医学知识的诊断建议,辅助医生临床诊断。
2)影像识别与分析:在影像学领域(如CT、MRI、X光等),AI可以通过图像识别的技术,自动识别病灶,辅助医生进行诊断。
3)病理分析:在病理学领域,分析病理切片图像,辅助医生临床诊断。
四、治疗方案推荐
根据患者病情,通过DeepSeek给出治疗方案建议。
具体包括:
1)个性化治疗建议:根据患者的病史、检验结果、基因信息等,通过Deepseek,为医生提供个性化的治疗方案建议。
2)药物推荐与禁忌提醒:根据患者的病情和药物过敏史,推荐合适的药物,提醒医生注意药物之间的相互作用与禁忌。
3)手术方案优化:通过分析手术数据和患者信息,为医生提供手术方案的优化建议。
四、风险预警与决策支持
AI能够实时监控患者的生命体征和检验结果,预警潜在风险(如药物不良反应、术后并发症等)。
因此我们可以通过DeepSeek处理以下一些工作。
具体包括:
1)疾病风险预测:通过分析患者的病史和健康数据,通过Deepseek预测患者患某种疾病的概率,提醒医生提前干预。
2)治疗风险预警:在治疗过程中,通过Deepseek实时监控患者的生命体征和检验结果,预警潜在风险(如药物不良反应、术后并发症等)。
3、患者沟通管理贴心工具
在医生的日常工作中,有大量的医患沟通,健康宣教,患者管理,及院后随访等工作,这些方面AI都能支撑。
所以我们也可以通过DeepSeek做比较多的事情,包括:
一、患者沟通
1)智能医生助理:通过DeepSeek打造智能AI助手,可以辅助医生收集患者病情,也可以帮助医生回复一些非医疗类问题,比如门诊排班情况,就医流程及手续等,充当医生的智能小助手。
2)智能问答:通过Deepseek为医生提供患者常见问题的智能解答,帮助医生更高效地与患者沟通。
二、健康教育
健康教育材料的生成:根据患者的病情,通过Deepseek可以自动生成个性化的健康教育材料,帮助医生更好地进行患者教育。
三、患者随访与管理
1)慢病管理:对于慢性病患者(如糖尿病、高血压等),可通过Deepseek实时监控患者的健康数据(如血糖、血压等),并自动生成随访计划,提醒医生关注患者的状态。
2)术后随访:通过Deepseek分析术后患者的恢复数据,提醒医生进行随访,并提供恢复建议。
3)远程患者管理:通过远程监控和数据分析,帮助医生管理居家康复或慢病患者者,减少患者往返医院的次数。
4、科研与医学教育智能辅助
对于科研教学型医院,科研与医学教育也是医生的重要工作。
同样可以通过DeepSeek辅助工作开展。
具体包括:
一、科研支持
1)数据挖掘与分析:通过Deepseek可以从海量的医疗数据中提取有价值的信息,帮助医生进行临床研究,发现疾病规律或治疗新方法。
2)文献检索与推荐:根据医生的需求,通过Deepseek快速检索相关的医学文献,并提供最新的研究成果和治疗指南。
3)科研数据整理:自动整理科研数据,生成统计报告或可视化图表,提升科研效率。
二、医学教育与培训
1)病例学习:Deepseek可以为医生提供典型病例的学习资料,帮助医生提升临床技能。
2)模拟诊断:通过虚拟病例,Deepseek可以为医生提供模拟诊断训练,帮助医生积累经验。
3)知识更新:根据医生的专业领域,Deepseek可以推荐最新的医学研究进展和临床指南,帮助医生保持知识更新。
其实DeepSeek能做的事情远不止以上这些,在这里就不再一一展开,大家可以自行探索。
总结
AI的发展的确越来越快,DeepSeek作为中国AI现象级产品,在美区下载榜上曾经一度超越了ChatGPT。
可以说DeepSeek凭借一己之力,改变了全球AI竞争格局。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。