刚刚,马斯克xAI的Grok 3终于亮相(超300万人次围观)!
一出道即巅峰,竞技场(lmarena.ai)官方给出了这样的评价:
Grok 3是首个突破1400分的模型,并且在所有类别中排名第一。性能超过DeepSeek R1!
而且,Grok 3还是首个在10万张(后扩展到20万)H100集群上训练出的模型。
在发布预告消息的时候,马斯克就对Grok 3大力夸赞,称其是**“地球上最聪明的AI”**。
发布之前,大神Karpathy获得了抢先体验资格,玩了两个小时之后发长文详述了自己的感受。
Karpathy认为,Grok-3的思考能力达到了SOTA,推理水平和o1-pro差不多,略好于DeepSeek R1和Gemini的推理模型。
如果考虑到Grok 3是一年前从头开始训练的,取得这样的成绩属实不可思议。
并且对于数字母、小数比大小这些经典大模型“难题”,Grok 3在开启推理之后也都正确解决。
不过也人质疑Grok的地位,有一位仿冒老黄的网友说,Grok 3即便真的是最强,也最多只能强一周。
加上OpenAI也剧透了下一代GPT计划,马斯克和奥特曼的另一场推特大战就要爆发了。
奥特曼昨晚也发推称,GPT-4.5的测试让他感受到了比预期更强烈的“feel the AGI”的感觉。
还有网友到评论区起哄,让他在早上截胡马斯克,直播发布GPT-4.5。
言归正传,我们来看直播都讲了啥。
20万张H100,训出最强模型
这次直播一共有四人参与,除了马斯克之外,较为醒目的就是坐在C位的两位华人,他们都是xAI创始成员。
二人从左至右分别是:
-
Jimmy Ba,2023年斯隆奖得主,Hinton手下的助理教授,本科到博士都在多伦多大学。
-
吴宇怀Yuhuai(Tony) Wu,斯坦福大学博士后,博士毕业于多伦多大学。
而最左边的则是Igor Babuschkin,是xAI的一位工程师。
四人先是介绍了Grok 3的训练历程。
去年马斯克剧透,Grok 3在10万张H100上进行训练,是首个达到如此训练集群规模的模型。
当时就有网友称这简直是神经网络的超级工厂。
今天的发布会上又透露,到训练进行到第92天时,集群规模扩展到了20万卡。
如此强大算力,xAI也是紧跟潮流在Grok 3中推出了思维链推理能力。
在此前迪拜的一场峰会上,马斯克高调宣称:
Grok 3具有强大推理能力,聪明程度超越目前所有已知模型。
这一波Grok 3有满血和mini两个版本,在数学、科学、代码等数据集上表现均超过了GPT-4o、DeepSeek-V3等非推理模型。
并且Grok 3早期还化名“巧克力”打榜LMSYS,一举夺魁并成为唯一一个得分超1400的模型。
在Grok 3和mini的基础之上,xAI团队还打造了两款推理模型。
其中基于mini的推理模型(Grok 3 mini Reasoning)已经比较成熟,而基于满血版的推理模型(Grok 3 Reasoning Beta)还处在Beta阶段。
介绍成绩之前,四人用马斯克的账号先让Grok跑了两个案例,分别和物理学以及游戏相关。
生成一段代码,为从地球降落在火星,然后在下一个发射窗口返回地球的发射绘制三维动画图表。
生成的过程中,有人开玩笑说什么时候能把Grok装到SpaceX的火箭上,马斯克也回应说可能再过2年。
马斯克还表示,如果一切顺利,SpaceX将在大约2025年11月左右,也就是下一个地球-火星转移窗口期,用星舰把擎天柱机器人送上火星。
说回Grok,在考虑了开普勒定律并将其转化为代码之后,最终生成了可以绘制出这样的动画的代码:
第二个问题开启了Big Brain模式,会让模型用更多的计算资源去做更多的思考。
题目要求则是使用pygame组件,设计一款游戏,把俄罗斯方块和宝石迷阵缝合到一起。
同时还提示代码可能会很长,需要保存到一个文件当中,并且要“insanely great”。
而Grok 3也不负众望,把这两款游戏成功结合,并介绍了合体版游戏的特点:
运行起来是酱婶儿的,既有俄罗斯方块的消除机制,又根据宝石迷阵的特点调整成了三个方块消除一次。
再来看跑分结果,在数学、科学和代码任务中,两者都取得了不俗的成绩。
并且如果让他们“多思考”(柱状图上方浅色部分)之后,表现超越了DeepSeek-R1和高配版o3-mini。
不过,目前很多模型都在Benchmark上出现了“过拟合”的现象,那么Grok 3的实际表现究竟咋样呢?
研发团队让它们挑战了今年AIME 2025竞赛的试题,结果Grok-3 Reasoning Beta和mini Reasoning分别取得了93和90分的成绩,力压其他推理模型。
除了Grok 3预训练模型和两个推理模型之外,这次xAI团队还发布了一个AI Agent,叫做DeepSearch。
这个功能可以看做是xAI对OpenAI、谷歌等陆续推出的Deep Research功能的对标。
简而言之,DeepSearch通过扫描互联网和X来分析信息,并提供摘要来回答问题。
至于权限方面,X的Premium+用户今日起可以体验Grok 3。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。