前言
上周,Manus爆火将Agent发展推向新的高潮,随后又引发一波开源复现狂潮,Agent仿佛已被大众所熟知。
工程上可将Agent拆分为三个核心模块:规划、工具使用、记忆。
图中的Action代表着行动,是真正让智能体有「手」的关键因素,并让LLM能够与现实世界进行交互。
而Action事实上就依赖于智能体所拥有的工具集合,工具集合所能触及到的范围就是智能体的能力边界。
要是听着还迷糊的话,给大伙整个生活案例。
你自己就是个智能体,假如你的大脑都没有对「冰箱」这个工具的定义和认识,压根你就不知道还有「冰箱」这个工具的存在,那么你又怎么可能会去用冰箱保存食物呢?
MCP的划时代意义
每个开发者在设计智能体时,都要提前定义一堆工具。
在之前都是通过函数调用实现的,开发者定义特定函数和参数,让模型按照规定格式调用,这个过程重复且繁琐。
传统工具调用如同定制手机接口:每个开发者都要为AI定制专属API接口。当A公司的"提交代码"叫create_PR,B平台却用generate_PullRequest。像极了之前安卓的充电口是安卓的,苹果的充电口是苹果的,使用起来贼不舒服。
去年11月,Anthropic开源了Model Context Protocol (MCP)协议。理解MCP只需拆解三个字母:
- Model:各类AI模型,如GPT、Claude等
- Context:提供给模型的额外资料或上下文
- Protocol:代指MCP是一种通用标准或规范
MCP正在做的,是给整个AI世界装上Type-C接口。通过统一接口层,让所有开发者都使用同一套规范,让AI对接Github就像Type-C连接显示器般自然,这大家不就都舒服了吗。
MCP与传统工具调用的对比
为什么说MCP具有划时代意义?看看消费电子史就懂了。
当年苹果坚持Lightning接口的十几年,造就了:
- 全球累计销售几十亿条MFi认证数据线
- 每年产生几亿美元配件授权费
- 用户被迫携带多种转接头
直到欧盟强推USB-C统一标准,这场"接口军阀混战"才看到终结的希望。如今MCP想在AI领域复刻这场革命:
1.工具层解放:开发者无需重复造轮子
2.生态层重构:模型/工具可插拔替换
3.创新层爆发:资源向应用层倾斜
冷思考:标准化的代价与未来
当然,MCP并非银弹。就像统一普通话会消弭方言特色,标准化也可能带来:
- 创新自由度受限:如同所有开发者被"甲方审美"统一,万一MCP标准是错误的呢?
- 生态垄断风险:可能形成新的技术卡脖子点,MCP核心生态可能全被主导者控制,并要求开发者强行遵守
- 过渡期阵痛:现有系统的适配成本
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。