1.成果简介
摘要
大型语言模型 (LLM) 是一种人工智能系统,以自然语言的形式封装了大量知识。这些系统擅长许多复杂的任务,包括创意写作、讲故事、翻译、问答、总结和计算机代码生成。尽管 LLM 已在自然科学领域得到初步应用,但它们在推动科学发现方面的潜力在很大程度上仍未得到探索。在这项工作中,我们介绍了 LLM4SD,这是一个框架,旨在通过从文献中综合知识并从科学数据中推断知识来利用 LLM 来推动分子性质预测的科学发现。LLM 通过从科学文献中提取既定信息来综合知识,例如分子量是预测溶解度的关键。为了进行推理,LLM识别分子数据中的模式,特别是在简化的分子输入线输入系统编码的结构中,例如含卤素的分子更有可能穿过血脑屏障。这些信息以可解释的知识形式呈现,能够将分子转化为特征向量。通过将这些功能与随机森林等可解释模型一起使用,LLM4SD 可以在一系列预测分子特性的基准任务中超越当前最先进的技术水平。我们预计它会提供可解释的和潜在的新见解,有助于分子特性预测的科学发现。
关键词
大语言模型、科学发现、分子属性预测
2.图文导读
图1:用大语言模型驱动的分子预测科学发现流程
-
目的:展示LLM4SD管道如何利用大语言模型从文献中合成规则、从数据中推断模式,并将这些规则转化为分子特征以训练可解释模型。
-
展示:流程分为四个阶段:a) 利用预训练知识从科学文献中提炼出预测规则;b) 分析SMILES数据及其标签,从数据中推断重要模式;c) 将规则转换为向量表征以训练传统可解释模型;d) 模型训练后输出规则重要性,揭示预测依据。
-
结论:该流程整合了大语言模型的知识与推理能力,为分子属性预测提供了一种透明且可解释的科学发现方法。
图2:LLM4SD与各基线模型在四个科学领域任务上的性能比较
-
目的:展示LLM4SD在生理学、生物物理学、物理化学和量子力学任务中相较于现有最先进模型的优势。
-
展示:图2a展示分类任务(如生理学和生物物理学)的性能对比,图2b展示回归任务(如量子力学和物理化学)的误差指标比较,红色虚线表示所有基线的平均水平。
-
结论:LLM4SD在各个领域均表现优于传统基线模型,特别是在回归任务中实现了显著的性能提升。
图3:LLM4SD组件评估:不同大语言模型骨干和知识来源对模型表现的影响
-
目的:评估不同预训练LLM骨干以及合成知识与数据推断知识各自对LLM4SD整体性能的贡献。
-
展示:图3a和图3b分别比较了七种LLM骨干在生理学、生物物理学以及物理化学、量子力学任务中的表现;图3c展示了仅用文献合成知识、仅用数据推断知识和两者结合时的平均效果。
-
结论:结合文献合成与数据推断两种知识能显著提升模型表现;同时,不同LLM骨干在不同领域任务中的表现存在差异,凸显了预训练数据和模型规模的重要性。
图4:LLM生成规则的统计分析与文献验证
-
目的:通过统计检验和文献回顾,验证由Galactica-6.7b生成的规则在各科学领域中的显著性及其文献支持情况。
-
展示:图4对四个领域中每个领域两个任务的规则进行了Mann–Whitney U检验或线性回归t检验,同时结合文献检索将规则分为“统计显著且文献支持”、“统计显著但未在文献中发现”以及“统计不显著”三类
-
结论:大部分生成规则在统计上显著且得到文献支持,同时还揭示了一部分可能的新规则,为未来的科学探索提供了潜在方向。
3.创新点总结
一、大语言模型驱动的知识整合
利用预训练的大语言模型自动从科学文献中提炼出预测规则,并结合数据推断识别关键分子特征,实现从文本知识到数据知识的无缝整合。
二、可解释特征向量生成与建模
将生成的规则转化为可解释的分子特征向量,进而使用如随机森林等传统可解释模型进行预测,不仅提高预测精度,同时揭示了分子结构与属性之间的内在联系。
三、跨领域性能验证与预训练模型比较
在生理学、生物物理学、物理化学和量子力学等多个领域任务上,系统评估并比较了不同大语言模型骨干的表现,展示了预训练数据规模和领域专用预训练对科学发现的重要影响。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。