开源!基于DeepSeek的智能数据分析系统

源代码:
http://www.gitpp.com/deepseekdemo/deepseek-framework
系统架构
图片

基于DeepSeek的智能数据分析系统是一个强大的数据分析工具,以下是对该项目的详细介绍:

一、项目概述

DeepSeek是一款基于深度学习和数据挖掘技术的智能搜索与分析系统,旨在通过对海量数据的深度分析,提取出有价值的信息,并为用户提供精准的决策支持。该系统凭借其先进的自然语言处理(NLP)、机器学习和深度学习技术,能够显著简化数据分析流程,提升效率,并为用户提供直观的可视化报告。

二、核心功能

1.数据导入与处理
支持多种数据格式的导入,包括结构化数据(如CSV、Excel、SQL数据库表)和非结构化数据(如文本、日志文件)。
提供自动化数据清洗功能,可以快速处理缺失值、异常值,并进行格式标准化,确保数据质量。

2.智能搜索
提供强大的智能搜索功能,支持关键词搜索、高级搜索以及模糊匹配和同义词扩展。
用户可以通过自然语言描述直接查询数据,系统会自动理解需求并返回相关结果。

3.数据分析与可视化
能够将分析结果以直观的图表形式展示,支持折线图、柱状图、饼图、散点图等多种可视化类型。
用户可以通过简单的界面操作生成图表,并进行自定义样式调整。
支持将多个图表组合成报告,并导出为PDF、Word等格式,方便用户分享和展示分析结果。

4.高级分析功能
不仅支持基础的数据分析,还提供文本分析、关联规则挖掘、时间序列预测等高级功能。
用户可以通过这些功能挖掘数据的深层价值,为决策提供支持。

三、技术特点

1.深度学习模型
:利用深度神经网络(DNN)对数据进行建模,能够自动提取数据的特征,并理解数据之间的复杂关系。这种模型特别适用于处理非结构化数据,如文本、图像和音频。

2.自然语言处理(NLP)
:集成了先进的自然语言处理技术,能够理解用户的查询意图,并根据上下文提供相关的搜索结果。例如,当用户输入一个模糊的问题时,DeepSeek能够通过语义分析,给出最相关的答案。

3.数据挖掘与知识图谱
:通过数据挖掘技术,从海量数据中提取出有价值的信息,并将其构建成知识图谱。知识图谱是一种结构化的知识表示方式,能够帮助系统更好地理解数据之间的关系,从而提高搜索的准确性和效率。

四、应用场景

1.企业运营
:可以通过对企业内部数据(如销售数据、客户反馈、市场趋势等)的深度分析,帮助企业识别潜在的市场机会和风险。

2.金融风控
:通过对金融市场数据的深度挖掘,识别出潜在的风险因素,并为投资者提供精准的投资建议。

3.医疗诊断
:通过对患者的病历、检查报告等数据的深度分析,帮助医生识别出潜在的疾病风险,并提供个性化的治疗方案。

4.电商推荐
:通过对用户行为数据的深度分析,理解用户的需求,并提供个性化的产品推荐。

五、优势与挑战

1.优势
提供了从数据清洗、智能搜索到可视化分析和报告生成的全流程支持,能够显著提升数据分析的效率和准确性。
无论是新手小白还是专业分析师,都可以通过DeepSeek快速上手并实现复杂的数据分析任务。

2.挑战
数据隐私与安全:如何在不侵犯用户隐私的前提下,有效地利用数据,是DeepSeek需要解决的重要问题。
模型的解释性:深度学习模型通常被认为是“黑箱”,其决策过程难以解释。在实际应用中,用户往往希望了解系统是如何得出某个结论的。因此,如何提高模型的解释性,是DeepSeek需要面对的另一个挑战。
计算资源的消耗:DeepSeek的深度学习模型需要大量的计算资源进行训练和推理。如何在不牺牲性能的前提下,降低计算资源的消耗,是DeepSeek需要解决的技术难题。

六、开源与商用

DeepSeek遵循开源的理念,任何人都可以免费使用和修改其代码。同时,它也支持商用,并提供了灵活的收费策略以满足不同用户的需求。例如,对于API调用,DeepSeek采取了按输入tokens和输出tokens计费的方式,价格亲民且透明。此外,DeepSeek还提供了免费试用和订阅制等计费模式,降低了用户的使用门槛和成本。

图片

基于DeepSeek的智能数据分析系统是一个功能强大且易于使用的数据分析工具。它能够帮助用户快速实现复杂的数据分析任务,并提供直观的可视化报告和精准的决策支持。
源代码:
http://www.gitpp.com/deepseekdemo/deepseek-framework

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值