Data Agent:Data + AI最典型的应用场景

Agent简介

在大模型领域,Agent是一种基于大模型技术,能自主感知环境信息、运用自身智能进行分析决策,并采取行动以达成特定目标的智能实体,具有自主性、智能性和交互性等特点,可应用于智能客服、机器人控制、数据分析决策等多个场景。

2024年,Google团队发布了第一版Agents白皮书。

白皮书中对Agent的定义是,Agent可以理解为是一个扩展了大模型出厂能力的应用程序。工具的使用,是人类区别于动物的标志,也是Agent区别于大模型的标志。

图片

Data Agent的应用

Data Agent是一种基于人工智能技术,特别是大模型技术的数据分析智能体,能将自然语言指令转换为数据操作,实现数据提取、分析和可视化。简单的说,Data Agent就是在大模型基础上构建一个数据分析的智能体。

Data Agent在很多场景有比较广泛的应用:

  • 企业数据分析:在企业中,用于财务数据分析、市场趋势分析、客户行为分析、运营数据监控等,帮助企业更好地理解业务状况,发现潜在问题和机会,支持战略决策和日常运营管理。

  • 数据治理:协助进行数据质量评估、数据清洗、数据分类与标注等数据治理工作,提高数据的质量和可用性,确保数据的准确性、一致性和完整性。

  • 智能客服:在客服场景中,Data Agent 可以理解用户的问题,从相关数据中获取答案,为用户提供准确、及时的服务,提高客服效率和满意度。

  • 科研与学术研究:在科研领域,可用于处理和分析实验数据、观测数据等,帮助科研人员更快地发现数据中的规律和趋势,支持科学研究和创新。**
    **

    **
    **

    部分企业的落地应用

阿里云瓴羊智能

图片

瓴羊服务的客户非常多,有制造业、零售业等各种各样的客户,这些客户的内部流程和业务场景千差万别。随着 AI 技术的不断进步和业务场景的持续演变,要充分发挥 AI 的独特价值,关键在于以下两点:

(1)数据资产建设:企业内的数据相关部门或团队需要构建清晰且易于使用的数据资产。在上一轮的数据革命中,阿里巴巴主要解决的就是通过打造数据中台统一数据,并保证数据高质量的问题。

(2)角色赋能与数据利用:一旦数据资产建立起来,接下来的重点是如何让企业中的各个角色,尤其是那些与数据紧密相关的角色,发挥出其最大的价值。每个角色在服务用户时所需的数据及其使用方式各不相同。瓴羊的策略是为这些角色提供一个名为 Data Agent的数据平台,在这个平台上,他们可以根据自身的需求和场景快速创建定制化的数据代理(Agent)。这不仅有助于将特定角色的知识和经验沉淀下来,还为未来构建大规模的企业内部AI代理市场奠定了基础。

因此瓴羊智能诞生了Dataphin·DataAgent,瓴羊的Dataphin·DataAgent有两个核心能力:「快速找表」和「快速构建私有化DataAgent」能力

图片

DataAgent是基于已准备好的数据资产(包括但不限于表格、指标、标签和数据 API 等),通过 Dataphin 快速编排而形成的智能化工具。它支持权限管理,能够针对不同业务部门实施访问控制。借助阿里巴巴成熟的数据资产管理经验,企业可以创建专门的工作空间来构建各部门的知识库,并根据这些知识库实现跨用户群及部门间的权限隔离。

Dataphin·DataAgent 为每位数据工作者提供了一个专属的数据智能助手。该平台集中管理来自多个源头的数据资源,采用主题式的目录结构进行组织,并赋予每项数据丰富的多维度属性,从而实现了从原始数据到有价值资产的转变。通过构建向量数据库并结合流程设计,用户可以轻松创建个性化的智能助手,开启智能化对话服务。

例如,官方推出的智能助手小D可以根据具体的商业目标提出建议,并给出分析框架。此外,它还能深入剖析复杂问题,识别出重要的数据资产元素,帮助用户精准定位所需信息。同时,这款工具还提供了查看数据间的关联性以及生成报告的功能,使得从需求分析到报表制作整个流程变得更加简单快捷。另外,当有特定的数据提取需求时,它也能辅助生成相应的查询代码,展示结果,并支持可视化数据分析,进而高效地完成高质量的数据分析报告,助力企业更好地挖掘其数据资产潜力。

用户还可以自行开发定制化的智能应用,并一键部署上线,以便更加有效地服务于具体业务场景,激发新的增长点。

Google

就在2025年3月,Google开源了Data Science Agent,在谷歌Colab中,由Gemini AI驱动的Data Science Agent作为一个智能助手,可自动完成库导入、数据集加载、可视化、代码生成和代码执行。

除了自动化之外,Gemini 驱动的代理还通过提供上下文感知建议、协助错误调试和代码优化来增强数据分析过程。通过将人工智能集成到 Colab 笔记本中,数据科学代理大大减少了重复编码任务所花费的时间,使用户能够专注于提取洞察力、构建模型和增强决策过程。

Data Science Agent还在 DABStep: Data Agent Benchmark for Multi-step Reasoning on HuggingFace 中名列第四,领先于基于GPT 4o、DeepSeek-V3、Claude 3.5 Haiku 和 Llama 3.3 70B的ReAct代理。

Google Colab 中的Data Science Agent由 Gemini AI提供支持,通过处理重复性任务和自动生成代码来简化数据分析工作流程,下面是一个案例:

  • 打开Notebook:启动一个空白的 Notebook,点击 Google Colab Notebook,然后点击"New Notebook";
  • 上传数据:打开新 Notebook 后,点击"Analyze files with Gemini",然后将鼠标悬停在右下角的添加文件菜单上,如图所示,即可将数据集导入笔记本,无论是 CSV(.csv) 还是 Excel 文件 (.xls) ;
  • 定义目标:在Gemini侧面板中,指定您需要的分析或模型类型。您可以使用自然语言提示,如"可视化趋势"、“建立并优化预测模型”、“处理缺失值"或"选择最佳统计技术”。代理会理解你的要求,并据此调整工作流程;
  • 让Agent完成工作:一旦您提供了目标,Data Science Agent就会生成必要的代码、导入相关库并执行所需的分析。只需片刻,您就能得到一个功能齐全的 Colab 笔记本,以便进一步探索和完善。

图片

字节跳动

就在昨天2025年4月8日,火山引擎官方发布了第一位 AI 数据专家:「Data Agent」。

作为企业数据全场景智能体。Data Agent 能够对企业内部结构化、非结构化数据进行融合分析理解业务诉求并生成深度研究报告,无缝制定营销策略,完整执行营销活动,1v1地为每位用户配置触达时机和营销文案,活动结束后自动复盘全程,并且持续学习进化。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值