3分钟搭建一个智能体,可以调用支付宝、高德地图的那种。
最近,蚂蚁宣布入局MCP,在一站式智能体开发平台**“百宝箱”上线专区,可支持30余款MCP服务**的部署和调用。
创建好的智能体还可发布在支付宝小程序上,扫一扫即用。
由此在“百宝箱”平台上,开发者上可直接拥抱支付宝、高德地图这样的国民级应用生态;下可调用DeepSeek、通义千问、Kimi、智谱等主流大模型,使用50多款插件和近百款工具。
今年,AI智能体是绝对热点。Manus开启趋势,开源的MCP协议是推动浪潮的关键因素。
对于开发者而言,这无疑是一次更大的机遇。
相比于大模型应用开发,AI智能体具备更高自主性、更强执行力,可连接丰富生态,具备更丰富的商业变现机会。
AI时代的Killer APP,或许就藏在这轮AI智能体浪潮中。
然而从开发门槛到生态打通再到商业模式,每一关都充满挑战。
但随着一众互联网大厂纷纷拥抱MCP,AI智能体这股趋势,正在愈加明了。
为啥这么说?来看蚂蚁的最新进展。
灵活调用支付宝、高德地图等
目前,蚂蚁“百宝箱”上线两种MCP服务模式。
一种是全周期托管服务,用户无需管理资源、开发部署、工程运维等工作,开箱即用。
也就是开头提到的“3分钟即可快速搭建一个连接MCP服务的智能体”。
它的特点是零代码易开发,人人可上手体验。
比如想要构建一个对话类型的简单智能体,用户只需选择对应选项,即可开始搭建。
具体搭建页面大概如下,最左边是智能体的角色与指令设置,无需精通提示词,给出关键词AI可一键优化。
中间栏是可以给智能体增加的知识与技能。“点击插件→选择MCP插件”,即可给智能体接入相应的MCP服务。
通常平台会自动匹配合适模型,但也可手动选择。
蚂蚁“百宝箱”已支持DeepSeek-V3-0324、通义千问·Max等先进大模型,并标注了不同模型的特长,方便选择。
最右边是效果预览,比如智能体已调用高德地图,查询了今日北京的天气情况,并给出了穿衣推荐。
第二种是提供快速部署能力。
它的特点是低成本和灵活性。
可以在已经上线的AI智能体中快速接入新的MCP服务(如高德地图API、无影云桌面等)。这样的好处是开发者可以根据实际需要灵活接入MCP服务,不必一开始就投入大量开发资源去集成可能用不到的功能,让开发者只为实际使用付费,更具性价比。
百宝箱提供内置监控系统实时追踪API调用、token消耗等指标,开发者可以实时看到服务更新和异常。
与此同时,百宝箱MCP专区也将接入一套安全解决方案,保障各方数据、隐私安全。
据了解,该安全解决方案由国内首个智能体安全生态协作组织 —“IIFAA智能体可信互连工作组”研发,可以在MCP协议基础之上,保障各智能体在权限、数据、隐私等多方面的安全,蚂蚁集团是发起单位之一。
综上几方面,蚂蚁智能体“百宝箱”完成全面拥抱MCP。
实际上,最近国内外隐隐掀起一股MCP趋势,OpenAI、谷歌、阿里等科技大厂纷纷入局。
所以,Why?为什么大家都看好MCP?
AI智能体时代,亦是生态为王
首先来解释一下MCP协议。
一句话总结,它被视为AI时代的**“HTTP协议”**,让AI模型能够更容易地访问和利用外部资源,提升了开发效率和系统的可扩展性。
MCP本质上是一种通信协议,由打造了Claude的Anthropic提出,他们将MCP比喻成AI应用的Type-C接口。
它核心解决了全球应用玩家们的一个痛点——数据隔离。就像AI系统与数据源之间的一座桥梁,允许开发者在数据源和AI工具之间建立双向连接。
其优势在于,以后不管是访问本地资源(数据库、文件、服务),还是访问远程资源(如Slack、GitHub API),都能用同一个协议。
同时MCP服务器还内置了安全机制,允许服务器自己控制资源,不用把API密钥交给大模型。
目前拥抱MCP的玩家主要分为两类,大模型厂商和互联网大厂。
前者包括Anthropic和OpenAI,都是目前AI领域最前沿的大模型公司。
他们对MCP协议的支持更偏向于专业开发者,为开发者提供了标准化接口,支持无缝将第三方工具接入到AI模型,激励开发者用自己的模型去做丰富应用开发。
后者为包括蚂蚁在内的互联网科技大厂,他们的优势在于,从互联网时代搭建起的繁荣生态,可一键向开发者们开放。
以蚂蚁为例,它拥有支付宝这一超级应用,辐射高德地图、饿了么、淘宝等多个日常高频应用场景。这种应用矩阵构成了用户数字生活的完整闭环,从衣食住行到金融服务,形成了无缝覆盖。
这一矩阵不仅拥有超10亿用户规模,更重要的是触达了用户日常生活的几乎每个环节,为AI落地提供了全域应用场景。
具体形式上,蚂蚁很早就看到了智能体的潜力。
去年9月,蚂蚁面向行业正式启动智能体生态计划,并推出智能体开发平台“百宝箱”。
核心策略之一就是开放。
不仅仅是生态开放,“百宝箱”强调低门槛、零代码开发,目标群体不局限于专业开发者,底层模型上也更开放,同时支持DeepSeek、通义千问、Kimi、智谱等多种大模型,这使得开发者能够根据具体场景需求选择最适合的底层模型,形成更加活跃的开发者社区,为创新提供土壤。
这也是为何在智能体趋势爆发后,蚂蚁“百宝箱”能够快速跟进、拥抱MCP。
而蚂蚁等公司的一系列布局和动作,似乎也逐步显现出一个行业信号:AI智能体时代,依旧生态为王。
“未来一定不只靠一个大模型”
随着底层模型能力不断进阶、算力成本进一步优化,AI行业已经到了大规模应用落地的关键节点。
正如移动互联网时代的发展一样,只有在基础设施完备的情况下,才能迎来开放生态繁荣,迎来真正意义上的爆发。
iPhone诞生于2007年,但人人都能感知到的移动互联网时代起始于iPhone4发布的2010年。
why?因为在早期,通信网络、硬件能力、应用生态发展都不够完善,优质应用难以诞生,killer APP无法产生。
AI时代亦是如此。一个活跃的开发生态,需要AI时代的“基建”完善。
对应来看,蚂蚁正在通过“百宝箱”这一平台为AI智能体生态完善各方面能力。
- 底层:提供基础大模型接入能力,提供智能资源;
- 工具层:50余款插件与工具,降低开发难度;
- 中间层:MCP服务,连接更多功能与能力,拓宽AI能力边界;
- 顶层生态:整合支付宝、高德地图等30多款服务能力,为开发者提供“商业配套”。
由此,以生态为核心逻辑,蚂蚁不是为了制造一个单一的AI产品,而是建设一个完整的基础设施和生态系统。
让AI智能体开发者能够更快构建有实际应用价值的AI智能体,也加速AI应用在各行业的落地与普及,由此构成正向循环。
在2024世界人工智能大会上,蚂蚁集团董事长井贤栋曾清晰表达了这种思考:
未来智能化的用户体验,一定不是只靠一个大模型,而是需要全行业深度协作、需要很多的专业智能体共同参与、各司其职。
蚂蚁坚持走开放道路,和行业共建智能体生态。
由此,在2025年,AI智能体爆发元年,行业认知也需要刷新了——
AI新时代,胜出的不一定是拥有最强大模型的公司,而是构建最活跃、最高效、最开放生态的玩家。
移动互联网时代,iOS→AppStore→SuperAPP的发展逻辑,依旧值得参考。
如果说,Manus打开了AI智能体协作的想象,MCP则将这种想象平等地带到每个开发者面前、更开放活跃的开发生态开始汇聚。
由此,距离AI智能体真正意义上的爆发,也更近一步了。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。