大模型入门指南 - Inference:小白也能看懂的“模型推理”全解析

对于刚接触大模型(如GPT、LLaMA、DeepSeek、Qwen等)的新手来说,"推理(Inference)"可能是最让人困惑的术语之一。它不像"训练"那样直观,也不像"微调"那样有明确的目标,但却是大模型从"学习"到"干活"的关键环节。

Best LLM Inference Engines and Servers to Deploy LLMs in Production - Koyeb

一、概念解读

****Inference(模型推理)到底是个啥?****模型推理是训练好的大模型从“学习知识”到“实际应用”的核心环节。*模型推理 = 让训练好的模型"干活"(比如回答你的问题、翻译文本、生成文章等)。*

简单来说,就是让模型根据输入数据“动脑思考”,生成答案或决策。例如,输入“请解方程:3x+5=32”,模型会输出解题步骤与答案。

  • 训练:就像学生背书、刷题,目标是记住知识(模型参数)。**
    **
  • 推理:就像学生考试,根据题目(输入)写出答案(输出),但不再翻书(不更新参数)。

模型推理的本质是通过将用户输入转化为数据信号,触发内部预存的参数‘齿轮组’(矩阵运算+注意力机制)高速运转,最终‘吐出’与输入匹配的答案,全程参数冻结、只做计算不做学习。

*How to generate training data for your ML system*

*为什么需要*Inference(模型推理)*?**模型推理是AI的“最后一公里”——训练赋予知识,推理激活价值;若仅有训练,模型便如“空有蓝图”的图纸,永远无法落地为“解决问题”的生产力工具。****
**
***

**模型如同一个刚出生的“婴儿大脑”(随机初始化的参数),无法理解任何信息,也无法解决实际问题。训练(Training)是让模型通过海量数据“学习知识”,从“一无所知”进化为“掌握规律”的“知识载体”;而推理(Inference)则是让模型将学到的知识“学以致用”,真正成为解决实际问题的“工具”。****

Understanding how LLM inference works with llama.cpp

二、技术实现

*Inference(模型推理)如何进行技术实现?**模型推理可通过“PyTorch原生推理、Transformers库推理、FastAPI服务化”三种方式实现,三者构成从“代码”到“服务”的完整技术链,分别对应“开发验证、快速部署、工业级服务”三大核心场景。***

*1. PyTorch 原生推理:开发调试的“零封装”方案*

*直接加载训练好的*.pt*/*.pth*模型,通过*model.eval() *+* torch.no_grad()*切换推理模式,复用训练代码逻辑(代码复用率超85%)。***

import torchfrom ultralytics import YOLO  # YOLOv8专用库from PIL import Image# 1. 加载预训练的YOLOv8模型(支持多种尺寸:nano/small/medium/large/x-large)model = YOLO('yolov8n.pt')  # 2. 切换至推理模式(YOLOv8自动处理,无需手动调用eval())# 3. 设置计算设备(GPU加速)device = 'cuda' if torch.cuda.is_available() else 'cpu'model.to(device)  # 将模型移至GPU/CPU# 4. 加载输入图像image_path = "test_image.jpg"image = Image.open(image_path).convert("RGB")# 5. 执行推理(自动预处理、推理、后处理)results = model(image)  # 输入支持PIL/OpenCV/numpy格式# 6. 解析检测结果(直接输出结构化数据)predictions = results[0].boxes.data  # 获取检测框数据(Tensor格式)print("检测结果(原始Tensor):\n", predictions)# 7. 转换为DataFrame格式df = results[0].pandas().xyxy[0]  # 转换为Pandas DataFrameprint("结构化检测结果:\n")print(df[['xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name']])# 8. 可视化与保存结果results[0].show()          # 显示带标注的图像results[0].save("output/")  # 保存结果到output目录

**2. Transformers 库推理:预训练模型的“一键式”部署****通过Hugging Face的*transformers*库加载预训练模型(基于Transformer架构的****Qwen、DeepSeek等大语言模型),实现“模型加载→推理→后处理”全流程封装。**from transformers import AutoTokenizer, AutoModelForCausalLM # 1. 加载模型和分词器 model = AutoModelForCausalLM.from_pretrained("llama-7b") tokenizer = AutoTokenizer.from_pretrained("llama-7b") # 2. 输入预处理 input_text = "解方程:3x + 5 = 32" input_ids = tokenizer(input_text, return_tensors="pt").input_ids # 3. 推理生成 output = model.generate(input_ids, max_length=100) # 4. 后处理 answer = tokenizer.decode(output[0], skip_special_tokens=True) print(answer) # 输出:"步骤1:两边减5 → 3x=27;步骤2:两边除以3 → x=9" **3. FastAPI 服务化:推理逻辑的“工业级”封装****将PyTorch/Transformers的推理代码封装为RESTful API,通过FastAPI框架支持高并发请求,结合Nginx负载均衡实现生产环境部署。**from fastapi import FastAPI, File, UploadFilefrom PIL import Imageimport torchfrom io import BytesIOimport base64# 初始化FastAPI应用app = FastAPI()# 加载预训练的YOLOv8模型(目标检测)model = torch.hub.load('ultralytics/yolov5', 'yolov8s') # 'yolov8s'为YOLOv8的小模型版本# 可选其他版本:'yolov8n'(nano)、'yolov8m'(medium)、'yolov8l'(large)、'yolov8x'(extra-large)@app.post("/predict")async def predict(image: UploadFile = File(...)): # 1. 读取上传的图像 contents = await image.read() image_pil = Image.open(BytesIO(contents)).convert("RGB") # 2. 执行推理(YOLO自动处理预处理和后处理) results = model(image_pil) # 3. 解析结果 detections = results.pandas().xyxy[0] # 转换为DataFrame格式 output = [] for _, row in detections.iterrows(): output.append({ "class": row["name"], "confidence": row["confidence"], "bbox": [row["xmin"], row["ymin"], row["xmax"], row["ymax"]] }) # 4. 返回结果(可选:返回带标注的图像Base64编码) results.render() # 在图像上绘制检测框 buffered = BytesIO() results.save(save_dir=buffered, format="JPEG") # 保存到内存 image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8") return { "detections": output, "image_with_boxes": image_base64 # 可选字段 }# 启动命令:uvicorn main:app --host 0.0.0.0 --port 8000****

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值