RAG(检索增强生成)系统通过利用大语言模型(LLM)并将其与特定数据源集成,使用户可以使用自然语言提出问题。
我将在本文重点介绍 RAG 的一个具体应用:将用户的自然语言转化成 SQL 查询并在数据库引擎上执行,最后以自然语言的形式返回结果。
最终我们将会得到一个能执行单表和联表查询的 SQL 助手:
我们的主要技术栈:
- LangChain 用于连接 LLM 与数据库
- LangGraph 用于管理多步骤工作流和内存
- Streamlit 作为聊天机器人用户界面
- 以 OpenAI API 兼容的形式调用阿里千问模型
用于 SQL 的 RAG 系统
SQL 的 RAG 系统通过将 LLM 与真实数据库上下文结合,帮助生成更准确的结果。LLM 不仅仅依赖通用训练数据,而是利用检索到的上下文生成精确、实时的响应。这些上下文来自数据库的模式元数据。
当用户提出问题时,系统会自动将上下文与问题一起作为提示的一部分提供。这帮助 LLM 理解 SQL 方言、可用表、关系和列数据,从而构建语法和语义正确的查询。
这些查询随后提交给数据库引擎,检索到的结果被转化为自然语言。
我在本文的示例是使用 SQLite 数据库查询 *Northwind 数据集,SQLite 是一个轻量级本地数据库,常用于教程和演示。**Northwind 数据集是一个经典的零售数据集,包含客户、产品、订单和员工数据。***
系统概览:工作原理
下图展示了整体系统架构——用户、数据库和大型语言模型如何通过应用层交互。
工作原理:内部工作流程和工具
应用层内的工作流程通常分为以下几个阶段:
工作流程背后的关键工具
- LangChain 是一个框架,旨在帮助将 LLM 与外部系统(如 SQL 数据库、API 和文件存储)集成,简化 AI 应用的构建。
- LangGraph 是 LangChain 的扩展,是一个编排框架,支持有状态的工作流程,允许系统在工作流程的多个步骤中保持上下文。
- Streamlit 是一个开源 Python 库,可用于构建简单、交互式的 Web 应用,完全使用纯 Python。
技术细节
现在让我们逐步了解其构建过程——从项目设置到数据库连接、模型编排和前端集成。
项目结构和前提条件
核心代码
db_connections.py:负责管理数据库链接,以及获取数据库中表相关重要元数据的代码。
sql_query_graph.py:定义了从接收用户问题、编写 SQL 查询、执行查询到生成最终答案的 4 个核心函数,最后使用 LangGraph 将这 4 个核心函数组织成逻辑工作流。
\1. write_query:生成语法正确的 SQL 查询。
- 使用选定的数据库,提取其方言和表信息。
- 使用 SQL 特定的提示模板指导 LLM 生成与数据库结构匹配的 SQL 查询。
\2. execute_query:使用 QuerySQLDatabaseTool 函数对选定数据库执行生成的 SQL 查询,并检索结果。
\3. generate_answer:使用 SQL 查询结果生成对原始问题的自然语言回答。
4. answer_question:创建基于图的执行流程,按逻辑顺序连接每个函数:
- write_query → execute_query → generate_answer
- 使用 StateGraph 创建图工作流,编译并运行。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。